Calculating the Clogston Chandrasekhar (CC) limit, HP
Chuck Agosta - Clark University
As we showed in a previous paper 3, following Clogston 1, we can find the critical magnetic field associated with the quenching of superconductivity by estimating the superconducting energy gap by analyzing specific heat data and setting this energy equal to the gain in free energy in a metal with susceptibility $\chi_e$. More specifically, we equate the superconducting condensation energy \begin{equation} U_c = 1/2 N(E_f) \Delta(0)^2, \label{eq:Uc} \end{equation} where $N(E_f)$ is the density of states at the Fermi energy and $\Delta(0)$ is the superconducting energy gap at zero temperature, with \begin{equation} \Delta F = 1/2\mu_0\chi_eH_P^2,\label{eq:dF} \end{equation} the magnetic energy of a metal with susceptibility $\chi_e$. The susceptibility $\chi_e$ can be expressed as $1/2(g\mu_B)^2 N(E_f)$, where g is the gyromagnetic ratio, but it is important to notice that $\mu_0H^2$ already has the units of energy density, so $\chi_e$ must be dimensionless. The expression $(g\mu_B)^2 N(E_f)$ has dimensions of $J/T^2m^3$, exactly the inverse of $\mu_0$. Therefore we substitute $\mu_0\chi_e$ into Equation \ref{eq:dF} and after equating $U_c = \Delta F$ and noticing that the density of states cancels out, and setting $g = 2$, we end up with the common result \begin{equation} B_P = \frac{\sqrt{2}\Delta}{g\mu_B} = \frac{\Delta}{\sqrt{2}\mu_B}.\label{eq:Bp} \end{equation} after using the relation that $B = \mu_0H$ and knowing that B is what we measure in the laboratory. This is the result of a direct comparison of the energy needed to break a Cooper pair with the energy needed to flip a electron spin. Orlando at al. 4 added a correction to formula \ref{eq:Bp} of $1/\sqrt{1+\lambda}$ where $\lambda$ is the electron-phonon interaction parameter, to account for many body effects. This factor was corrected by Schossmann and Carbotte 5 to not have the squareroot in the denominator. McKenzie in Zuo et al.6 adds a practical version of this correction to equation \ref{eq:Bp} defining $g^*$, and shows the enhancement of $g$, namely $g^*/g$, is equivalent to Wilson's ratio. Incorporating $g^*$ into equation \ref{eq:Bp} the result is: \begin{equation} B_{P}=\frac{\sqrt{2}\Delta}{g^*\mu_{B}}.\label{eq:hp} \end{equation} The ratio g*/g can be found from specific heat and susceptibility measurements (Wilson's ratio, $R_W$), or from spin-splitting of quantum oscillations, a measurement that is common in our laboratory. There is a table with $g^*/g$ found by both methods in McKenzie's paper on the arXiv.7 We recreate part of that table below with some corrections and addition information and materials. Despite knowing that $B_P$ is really the more useful parameter in this calculation, we will continue to use $H_P$ as the designation of the Chandrasekhar-Clogston Pauli paramagnetic limit as is common in most articles.
Material | $g^*$ | $g^*/g$ | $R$ | $\Delta$(meV) | $H_p$(T) | $m^*$ |
---|---|---|---|---|---|---|
$\kappa$-(BEDT-TTF)$_2$Cu(NCS)$_2$ | 1.77 8 | 0.89 8 | 1.4 | 2.5 | 21.6 | 3.4 |
$\kappa$-(BEDT-TTF)$_2$Cu[N(CN)$_2$]Br | ??? | ?? | 1.4 | 2.7 | 23.8 | 3.0 |
$\kappa$-(BEDT-TTF)$_2$I$_3$ | 2.21 9 | 1.11 9 | ?? | ?? | ?? | 3.9 9 |
$\beta$-(BEDT-TTF)$_2$I$_3$ | 2.21 10 | 1.11 10 | ?? | ?? | ?? | 4.2 10 |
$\beta$-(BEDT-TTF)$_2$IBr$_2$ | 2.3 11 | 1.15 11 | ?? | ?? | ?? | 4.0 11 |
$\beta$"-(BEDT-TTF)$_2$SF$_5$CH$_2$CF$_2$SO$_3$ | 2.0 12 | 1.0 12 | 1.0 7 | 0.75 | 9.2 | 2.0 |
$\beta$"-(BEDT-TTF)$_4$[(H$_3$O)Ga(C$_2$O$_4$)$_3$]C$_6$H$_5$NO$_2$ | 1.63 13 | 0.82 13 | ?? | ?? | ?? | 1.3 13 |
$\alpha$-(BEDT-TTF)$_2$NH$_4$Hg(SCN)$_4$ | 1.8 14 | 0.86 14 | 0.7 | 0.15 | 2.1 | 2.5 15 |
$\alpha$-(BEDT-TTF)$_2$KHg(SCN)$_4$ | 2.94 16 | 1.5 16 | ?? | ?? | ?? | 1.6 16 |
$\lambda$-(BETS)$_2$GCl$_4$ | 2.0 7 | 1.0 8 | ?? | 0.66 | 8.3 | 3.6 |
1 Clogston, A.M., "Upper Limit for the Critical Field in Hard Superconductors," Phys. Rev. Lett. 9, 266 (1962).
2 Chandrasekhar, B.S., "A Note on the Maximum Critical Field of High-Field Superconductors," Appl. Phys. Lett., 1, 7, (1962).
3 Charles C. Agosta, "Inhomogeneous Superconductivity in Organic and Related Superconductors," Crystals 8, 285 (2018).
4 Orlando, T.P.; McNiff, E.J., Jr.; Foner, S.; Beasley, M.R. "Critical fields, Pauli paramagnetic limiting, and material parameters of Nb3 Sn and V3 Si," Phys. Rev. B 19, 4545 (1979).
5 Schossmann, M.; Carbotte, J., "Pauli limiting of the upper critical magnetic field," Phys. Rev. B 39, 4210 (1989).
6 F. Zuo, J. S. Brooks, R. H. McKenzie, J. A. Schlueter, J. M. Williams, Paramagnetic limiting of the upper critical field of the layered organic superconductor $\kappa$-(BEDT-TTF)$_2$Cu(NCS)$_2$. Phys. Rev. B 61, 750 (2000).
7 R. H. McKenzie, R.H. "Wilson’s ratio and the spin splitting of magnetic oscillations in quasi-two-dimensional metals," arXiv 1999, arXiv.9905044.
8 Mihut, I. Agosta, C. Martin, C. Mielke, C. Coffey, T., "Incoherent Bragg reflection and Fermi-surface hot spots in a quasi-two-dimensional metal," Phys. Rev. B 73, 125118 (2006).
9 E. Balthes, M. Schiller, D. Schweitzer, I. Heinen, W. Strunz, E. Steep, A. G. M. Jansen, and P. Wyder, "Indications for electron localization effects in the strongly 2D organic metal $\kappa$-(BEDT − TTF)$_2$I$_3$ as observed by Shubnikov-de Haas experiments," Z. Phys. B 99, 163 (1996).
10 D. Beckmann, S. Wanka, J. Wosnitza, D. Schweitzer, W. Strunz, "Fermi surface studies in the low- and high-Tc phase of the organic superconductor $\beta$-(BEDT-TTF)$_2$I$_3$," Z. Phys. B 104, 207 (1997).
11 J. Wosnitza, G. Gloo, D. Beckmann, S. Wanka, D. Schweitzer, and W. Strunz, "The Fermi Surfaces of $\beta$-(BEDT-TTF)$_2$X," J. Phys. I France 6, 1597 (1996).
12 D. Beckmann, S. Wanka, J. Wosnitza,a, J.A. Schlueter, J.M. Williams, P.G. Nixon, R.W. Winter, G.L. Gard, J. Ren, and M.-H. Whangbo, "Characterization of the Fermi surface of the organic superconductor $\beta$"-(BEDT-TTF)$_2$SF$_5$CH$_2$CF$_2$SO$_3$ by measurements of Shubnikov-de Haas and angle-dependent magnetoresistance oscillations and by electronic band-structure calculations," Eur. Phys. J. B 1, 295 (1998).
13 A. F. Bangura, A. I. Coldea, J. Singleton, A. Ardavan, A. Akutsu-Sato, H. Akutsu, S. S. Turner, P. Day, T. Yamamoto and K. Yakushi, "Robust superconducting state in the low-quasiparticle-density organic metals $\beta$"-(BEDT-TTF)$_4$[(H$_3$O)M(C$_2$O$_4$)$_3$]$^.$Y: Superconductivity due to proximity to a charge-ordered state," Phys. Rev. B 72, 014543 (2005).
14 J. Wosnitza, G. W. Crabtree, H. H. Wang, K. D. Carlson, M. D. Vashon, and J. M. Williams, "Angular Dependence of the Cyclotron Effective Mass in Organic Superconductors," Phys. Rev. Lett. 67, 263 (1991).
15 Coffey, T. Martin, C. Agosta, C.C. Kinoshota, T. Tokumoto, M., "Bulk two-dimensional Pauli-limited superconductor," Phys. Rev. B 82, 212502 (2010).
16 T. Sasaki and T. Fukase, "Spin splitting at the high-magnetic-field phase transition of the organic conductor a-„BEDT-TTF...2KHg„SCN...4," Phys. Rev. B 59, 13,872 (1999).