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Shear viscosity measurements with a precision of 0.05% are reported for 3He 
and 4He along near-critical isochores 0.85 <P/Pc < 1.12, where Pc is the critical 
density. The temperature range was - lO-4 <e <1, where e = ( T - T c ) / T c  is 
the reduced temperature. The experiments were carried out with a torsional 
oscillator operating at 158 Hz, driven at resonance in a phase-locked loop. The 
absolute value of the viscosity was obtained by calibration at the superfluid 
transition of 4He, based on published values and from direct calculations using 
the free decay time constant of  the oscillations. The data are analyzed in terms 
of a model using the recent mode-coupling (MC) expressions by Olchowy and 
Sengers, and where account is taken of the earth's gravity effects. The theory 
could be -fitted very well to the experiment with a single free parameter, the 
cutoff wave number qD, which was found to be 3 .0x  lO 6 and 7.0x106 cm -1 
for 3He and 4He, respectively. We have used for the critical exponent the MC 
predicted value of z ,  = 0.054, which permits a -fit superior to that using z~ = 
0.064 predicted by dynamic renormalization group (DRG) theories. Detailed 
comparisons are made between the model calculations and data for various 
isochores and isotherms and good agreement is obtained. The effects of gravity 
are described in some detail. The predicted frequency effect in viscosity measure- 
ments is calculated for 3He and is shown to be obscured by gravity effects. 
Using the Olchowy-Sengers formulas, we have also -fitted the MC theory to 
the critical thermal conductivity data of 3He, again with qD as the only free 
parameter. This fit gave qD = 6× 107 cm-1, which in the ideal situation should 
have been the same as qD from viscosity. We also discuss a representation of 
the 3He viscosity data along the critical isochore by a power law and -first 
correction-to-scaling term. Using the viscosity and the critical conductivity data 
for 3He, we have calculated the dynamic amplitude ratio and obtained ~ = 
1.05 + O. 10, in agreement with predictions from M C  and DRG theories. Also, 

agrees with data of classical fluids. Finally, a comparison is made of recent 
shear viscosity data for C02 by Bruschi and Torzo with those on He. The C02 
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data are also analyzed in terms of the MC theory, and the discrepancies are 
discussed. In the Appendices, we present the results of new compressibility 
measurements on 3He along the critical isochore, as used in the MC analysis. 
We also present a brief analysis of the fluid hydrodynamics in the torsional 
oscillator leading to relations for the viscosity as a function of the measured 
quantities. Finally, we give a short outline of the vertical density profile 
calculations from the earth's gravity fieM for the calculations of the viscosity 
near To. 

1. INTRODUCTION 

The shear viscosity ~? near critical points has been of interest for a 
number of  years, and the modern statistical techniques have dealt with this 
property at quite some length. 1-3 Although abundant viscosity data exist 
for mixtures near consolute points 1'4'5 and for pure classical f lu ids  1'6'7 n e a r  

the l iquid-vapor critical point T~, no viscosity results have been reported 
for 3He and only preliminary ones for 4He near To. 8 Because of the availabil- 
ity of other transport and static properties data for 3He,9-12 a systematic 
study of the shear viscosity along several near-critical isochores seemed an 
obvious extension of the program carried on in this laboratory for a number 
of  years. In this paper we report measurements of ~7 in 3He and 4He using 
a torsional oscillator operating at 158 Hz. A wide temperature range is 
covered to permit the determination of the singular behavior of r/ above 
Tc and also of the regular (or background) value of the ~7 at several densities. 
We take advantage of  a recent improvement in the mode-coupling (MC) 
formulation by Olchowy and Sengers a3 to fit their theory to the experiments. 
Special attention is paid to the gravity effects (which are particularly severe 
for helium) and also to the predicted frequency effects. ~4 We also discuss 
the differences in the background viscosity behavior between 3He and 4He. 

In Section 2, a brief review is given of  recent theoretical progress on 
the critical shear viscosity. Section 3 is concerned with a description of the 
viscometer operation principles and its construction, and with other experi- 
mental techniques. In Section 4, the experimental procedures are described 
and also calculations pertinent to the viscometer, such as shear stress. Model 
calculations for the measured apparent viscosity as affected by gravity are 
described in Section 5, and in Section 6 the experimental results are presen- 
ted and analyzed with the help of predictions. The conclusions are summar- 
ized in Section 7. In Appendix A we quote the MC expressions used to fit 
the theory to both shear viscosity and thermal conductivity data. In Appen- 
dix B, new compressibility data for 3He along the critical isochore are 
reported. In Appendix C the relevant equations for the torsional oscillator 
are presented. Appendix D contains a brief outline of the cubic model 
formulas used for the gravity effects calculation. 
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2. D Y N A M I C  T H E O R Y  REVIEW 

At the present time, static critical properties for magnets and fluids 
near critical points appear to be well described by renormalization group 
(RG) theories, not only in the asymptotic regime close to To, but also in 
the regime where "corrections to scaling" become important. '5 For binary 
mixtures near the consolute point--and hence for pure fluids near To-- 
expressions from the dynamic renormalization group (DRG) theory with 
corrections-to-scaling terms have been developed very recently. 4 However, 
there has not yet been a derivation of crossover functions, spanning the 
temperature range between the background and the asymptotic critical 
behavior, as there has been for transport near the superfluid transition in 
4He.16'17 Another theoretical approach, the mode coupling theory (MC), 2 
has been developed 13''8 to the point where it includes not only the asymptotic 
critical, but also the crossover region into the background regime. In the 
analysis of our transport property data, we shall use the improved solutions 
to the MC equations recently developed by Olchowy and Sengers, 13 which 
are quoted in Appendix A. Since the completion of this analysis, Olchowy 
and Sengers have made further refinements to their expressions. However, 
these authors believe 13 that the numerical differences in the data analysis 
between these sets of calculation should be negligible. We shall also compare 
our data with the correction-to-scaling expressions presented by Beysens 
et al. 4 

2.1. Olchowy-Sengers  Formulation 

The two properties of interest here are the shear viscosity ~ and the 
thermal conductivity A, assumed to be the sum of a regular (or background) 
part X and a singular part AA, 

A = A+AA, ~7 = ~+An  (1) 

The conductivity is related to the thermal diffusivity DT = A/pCp, where 
p is the mass density and Cp the specific heat per unit mass, and in turn 
DT is related to the decay rate of the fluctuations F = D~q 2, where q is the 
wave number of the order parameter fluctuations. This decay rate is also 
expressed by a "background" and a singular term 

r : r + a r -  ~ q ~  AA q2 pCp(q ) " 1 - ~  (2) 

Here we note that the background term F is not constant, because Cp 
diverges strongly and can be approximated by a power law. (However, 

has only a mild temperature dependence.) Also, we note that an explicit 
q dependence of Cp has been assumed that is treated in the Ornstein-Zernike 
approximation. 13 
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In the mode-coupling approach to the critical transport problem, energy 
transfer between heat currents and density currents is examined with the 
order parameter fluctuations acting as a coupling between these modes. 
According to Kawasaki, 2 it is the increasing fluctuation amplitude of the 
density (the order parameter) and its lengthening decay times that will 
increase the lifetime of the intermediate states where thermal and viscous 
modes are excited during fluctuations, and which in turn lead to an increase 
in the microscopic transport coefficients. 

The critical viscosity and conductivity are obtained starting from two 
coupled integrals that are derived from the Langevin equations of motion. 2 
Of these equations, one is for the critical relaxation rate F, which slows 
down as Tc is approached, giving AA, and the second one is for the diverging 
viscosity. 

For the viscosity, Olchowy and Sengers obtained a solution of the form 

r /=  ~e -% m (3) 

is a lengthy function quoted in Appendix A, where H = H(qD~, F /  G, B) 
and where* 

B = pCo(O) /Ap2 f iT (O)  

G = 6"pkB T/67r~2~ (4) 

F = X~ (TAp2fiT(O) 

A = (T/p2)(OP/O T)p 

Here fiT(O) is the static compressibility and P the pressure, which are 
measured as a function of the reduced temperature e =- ( T -  To)~ Tc. Also, 
~=3~r /8  is the limiting value for q~:~oe of a function introduced by 
Ferrell, 19 tr(q, ~:). Furthermore, ~: is the correlation length ~: = ~oe -~ along 
the critical isochore with v = 0.63, and the exponent z, is given by 

z, = 8/(157r 2) = 0.054 (5) 

With the exception of  qD, the cutoff wave number, all the parameters 
listed in Eqs. (3) and (5) are known from experiments. Hence, in principle, 
expression (3) can be fitted to the experiments near Tc with one single free 
parameter qD as long as the dependence of  the correlation length on e and 
on p is known. For ~:, we shall use the cubic model approximation 2°'21 as 
will be described in Section 5 and Appendix D. Ideally, qff  represents the 
smallest critical wavelength disturbance or mode that could exist in the 
fluid. We would expect q~l to be of the order of the average atomic spacing 
in the fluid. (Fluctuations at smaller wavelengths do exist, but they contribute 

*In Ref. 13, y~ and y~ correspond to G and F in Eq. (4). 
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to the background transport  properties as predicted by kinetic theory, and 
not to the critical enhancement).  

In the limit where q o ~  >> 1, expression (3) asymptotically reduces to 
the power law form a8 

~7/"0 = ( Q~)Z (6) 

where Q is a function of  the various quantities listed in Eq. (4) and is a 
weak function of e. The nonconstancy of Q is caused by the fact that 
experimentally the critical exponent 7 for the compressibility does not equal 
29. 

Numerical  calculations, using the complete function H in Eqs. (3) and 
(A.1), and inserting data for 3He, show that in the asymptotic regime one 
still obtains a power law 

77/ ¢1 = A~Z ,  (~n) (7) 

where A is a constant and z,7(eff) is an effective exponent that is slightly 
( - 5 % )  lower than zn, as will be discussed in Section 5. 

There is some controversy in the predictions for the value of z,~. In the 
MC theory, one obtains z n = 0.054, is while from DRG,  the published esti- 
mates are z n = 0 .06522,23  and z n ~0.054. 24 

2.2. Corrections-to-Scaling Expressions 

Beysens et  aL 4 have presented expressions for the viscosity, from both 
the D R G  and the MC approaches,  that give the asymptotic terms and the 
first correction-to-scaling terms. 

For the MC theory, they obtained 

.~. O(O¢)Zn(  1 + ti~-a..~.. .  ) (8) 

where ti n is a constant. This expansion is valid for qo~  > 1, a requirement 
that is met in helium for e ~< 5 × 10 -3, as numerical calculations show. 

For the D R G  approach,  the result for 77 has almost the same form as 
Eq. (8). Here z n = 0.065 from an epsilon expansion and the amplitudes 
corresponding to Q and ~n are not specified. The correction-to-scaling term 
~-a is replaced by ~-o~o, with cooa~ 1.1. Expressed in terms of the reduced 
temperature along the critical isochore, the equation becomes 

rl = ~ e - Y , ( 1  + anea  + " " • ) (9) 

with Yn = znv and A = toeap. For all the binary mixtures except a single one 
that were investigated, 4 a fit of  the data gave an average value Yn = 0.042, 
corresponding to z n =0.065, close to the D R G  prediction. For the last 
mixture, however, the authors 4 obtained Yn = 0.031, corresponding to a z n 
even smaller than predicted by MC. The correction-to-scaling exponent was 
found to be A ~ 0.7 ± 0.4, which is consistent with the predictions from both 
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MC and DRG. 4 The data analysis on the mixtures in Ref. 4 has been 
criticized by Sengers. 1 

2.3. The Frequency Effect in Viscosity Measurements  

Parallel to the development of the MC theory, Ferrell and his 
collaborators 14'25 have developed a variation of this theory that they term 
"decoupled mode"  theory. In general, the results of this theory for the 
viscosity divergence are similar to those we have quoted above. However, 
Ferrell's method brought to light an explicit frequency dependence of  the 
viscosity, the consequence of which is that the viscosity divergence becomes 
blunted as T~ is approached. The cause of the phenomenon is rooted in 
the relationship between the perturbating (imposed) rate w at which ~7 is 
measured, and the average relaxation rate 26 F of the density fluctuations in 
the fluid. Essentially it is shown that if w -> F, the fluid will not be able to 
follow the controlled excitations (in our case the wall motions of the 
torsional oscillator) and the viscosity will tend to a constant value as Tc is 
approached. 

The actual calculation TM of this effect is, like the MC theory, mathemati- 
cally involved and furthermore cannot be put in closed form in three 
dimensions (3D). However, the viscosity can be conveniently extracted from 
calculations done in 2D and 4D. For a good approximation, one can use 
the results of the 2D calculation, which the authors claim is very close to 
the 3D case. 

The frequency effect is seen as a multiplicative factor of the zero- 
frequency divergence, namely 

~7(a, (:)/@ = exp {z,7[H + Ha(a)]}  (10) 

where H is as previously defined [Eq. (13)], a - w / F ,  F can be approxi- 
mated by 

I" = kB T/  (3~r~% e3) (11) 

and 

H i ( a )  = l{Re[ln S(f~)] + Im[ln S(a)]} (12) 

In this approximation, expressions for the terms in (12) are obtained 
as a function of 11 and are given by Eqs. (5.1) and (5.2) of Ref. 14. These 
allow us to make a numerical calculation of  ~7/9 versus reduced temperature 
for experiments done at constant frequency and density. These calculations 
are presented in Section 5. 



Transport Properties of Helium near the Liquid-Vapor Critical Point 243 

2.4. The Critical Thermal Conductivity 

The relaxation rate integral 2 alluded to briefly in Section 2.1 can be 
solved in a similar manner to that used for the viscosity, and the result 13 
can be expressed by the relation 

A)t = ( kB T / 6~r~ ) pCpl)( qD~, B) (13) 

where l)(qo~, B) is a complicated function reproduced in Appendix A, and 
where the symbols are the same as before. We note here that this function 
becomes unity in the asymptotic limit qo~ -~ oo, where Ah is represented by 
a simple power law, which was first derived by Arcovito e t  al .  27 Hence, the 
function fl(qo~, B) expresses a crossover correction that becomes important 
as e increases. The value of  qo does not enter into the asymptotic power 
law expression, contrary to the situation for the viscosity [see Eq. (15)]. 
Therefore, we might guess that the viscosity data offer a more sensitive test 
to a fit with a free qo parameter than do the conductivity data. 

The dynamic amplitude ratio ~,  to be discussed in Section 2.5, is 
incorporated into the function l)(qD~, B), with a value of ~ -- 1.03 assumed 
in the numerical calculation. 

2.5. The Dynamic  Amplitude Ratio 

Sengers ~ and Beysens et al. 4 have discussed the theoretical and experi- 
mental determinations of  the universal amplitude ratio ~ ,  where 

AA 61rr/~ 
(14) 

pCp kB T 

The early DRG predictions gave the asymptotic value for ~ as 1.12 when 
q~>> 1, but the more recent results by Paladin and Peliti 23 give ~ =  1.04. 
Beysens et al. 4 estimate that higher corrections to the calculation will place 
the asymptotic value of  ~ in the range 1.0-1.12. This result is consistent 
with the most recent predictions by the MC theory, 28 namely ~ = 1.03. 
Furthermore, Beysens et al. 4 point out that, according to the DRG theory, 
the ratio ~ has correction-to-scaling terms similar to those in Eq. (8). Hence, 
one can expect a variation of ~ with ~ (or e) that approaches an asymptotic 
value close enough to To. 

In pure classical fluids near the l iquid-vapor critical point and in binary 
mixtures, the singular thermal diffusivity AF/q 2 = AA/pCp usually has been 
obtained from light scattering experiments and the evidence suggests that 

- 1 . 05  ±0.1 from an average of  the values over a number of fluids. ~'4 In 
the case of 3He, both separate determinations of pCp and of AA, as well as 
diffusivity measurements (A/pCp) from light scattering, 29 are available. The 
new measurements of ~ in 3He permit us to test for this fluid the DRG and 
MC predictions for ~.  This will be reported in Section 6.6. 
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3. EXPERIMENTAL 

In this section we describe the apparatus, centered around the torsional 
oscillator, and the procedure to measure the viscosity. After a general 
introductory description of the cryostat, we deal with the oscillator itself, 
but relegate to Appendix D the derivation of the oscillator dynamical 
equations that lead to the viscosity determination. We then describe the 
mechanical construction and the electronics for the oscillator operation. 
This is followed by a description of auxiliary parts in the apparatus. 

3.1. General Description 

The cryostat for this experiment was designed and constructed with 
two special considerations in mind. First, a rigid platform at helium tem- 
peratures was needed that did not generate lateral or torsional motions of  
the viscometer or absorb energy from the oscillations. Second, the oscillator 
was to have only a weak mechanical coupling to the platform, to prevent 
transmission of outside vibrations. To these ends, a stiff main section was 
constructed that included vertical tubing, a vacuum chamber, and a platform 
holding a 4He pot for temperature control above 1.5 K. From the platform 
a cradle hangs by a beryll ium-copper fiber (0.3 cm diameter, 2.5 cm length), 
and contains the various devices (viscometer, density cell, etc.) necessary 
to the experiment. A 1-kg copper counterweight is rigidly connected to the 
cradle, giving it a torsional frequency of  about 8 Hz. The fiber acts as a 
low-pass filter and strongly attenuates vibrations from the cryostat sus- 
pension as they propagate toward the cradle. Hence, an environment suitable 
for the viscometer operation at - 1 5 0  Hz is established. To improve the heat 
transfer between platform and cradle, a copper braid is added as a heat 
leak. A general schematic presentation of the vacuum chamber is shown in 
Fig. 1. This chamber is rigidly suspended by three 2.5-cm-diameter stainless 
steel tubes with stiff, 1-mm-thick copper plates soldered at 12 cm intervals 
along their length. Two of the tubes are used as conduits for 30 single 
electric leads, 15 coaxial cables, and 3 sample capillaries into the cryostat. 
The cables and leads run from room-temperature connectors to heat sinks 
mounted on the underside of the vacuum chamber top plate. The third tube 
is used for pumping the 4He from the pot, which is also provided with a 
continuous-fill capillary from the main 4He bath. In addition, a cold-valve 
permits rapid filling of the pot. 

The cradle itself is split into three levels by circular thick copper slabs, 
into which the various components could be screwed. Curved, detachable 
copper plates form a sheath around the cradle. The viscometer and density 
cell are hung from the bottom of the slabs, while various other components, 
such as Ge resistor thermometers, standard resistors, heaters, and a vapor 
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Fig. 1. Schematic diagram of the cryostat showing the vacuum chamber with the vibration 
isolated cradle. 

pressure bulb, are attached on top of the slabs. The top level holds the 
density cell and the middle level supports the 158-Hz viscometer. We also 
experimented with a viscometer operating at 6 kHz, which was attached at 
the lowest level. Unfortunately, this latter device was very sensitive to 
vibrations in that frequency range and was not used for the measurements 
to be reported. 

A 0.5-cm-diameter OFHC vertical copper rod soldered to the top of 
the vacuum chamber and extending to the copper counterweight hangs 
through special slots to prevent it from touching the cradle. Its purpose is 
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to heat-sink the capillaries to 4.2 K between the room-temperature top plate 
and the temperature-controlled cells, and to prevent significant amount of  
sample above the heat-sink location. The capillaries are made of several 
sections with progressively decreasing diameter as the temperature 
decreases. We estimate that none of the capillaries contains a mole fraction 
of  more than 0.5% of  the total sample of either cell. 

3.2. The Viseometer. Design Considerations 

The torsional oscillator design is based on the same principles as in 
the work of previous authors. 3°-3a Because of  certain differences in experi- 
mental conditions, it is useful to present here the relevant relations needed 
to derive the viscosity from the measured parameters. The details of the 
derivation, which starts from the Navier-Stokes eq~Jation, are given in 
Appendix D. 

In the oscillator chamber, the fluid is contained between two horizontal 
circular plates of radius R spaced by a distance h, where R >> h. The fluid 
has a viscosity ~ and a mass density p, and the disks oscillate at an angular 
frequency to with an amplitude O( t )  = 0o sin tot. 

The differential equation for such a driven torsional oscillator is written 
as 

IsO(t) = - K 0  + rD + (15) 

where Is is the moment of inertia of the empty oscillator. Furthermore, K 
is the elastic constant for the torsion bar, 

is the driving torque, and 

FD = D e  - i ~  e i~' (16) 

r 

FE = w E O ( t )  (17) 

is the empty-cell damping term. Finally, 

F f  = 2 I ~ o ( i  - 1) 0(t) (18) 

is the damping term imparted by the fluid layer on both the two horizontal 
walls and the vertical one of the viscometer, where 

I f  = l~rp6R3(  R + 2h) (19) 

which is the moment of inertia of a layer of fluid one-half a penetration 
depth 6, with 

6 = (2~7/p to)  '/2 (20) 
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The term 2h is the contribution of the vertical wall of height h. It is useful 
here to estimate the penetration depth. Using to/2~r = 158 Hz, p = 0.04 g/cm 3 
for 3He near To, and B -~ 16/xP, we obtain 6---9x 10-4 cm. 

The quality factor QT for the total system is given by 

~KOg K 
QT - ½toZOZ(If + E )  - w2(II + E) (21) 

For a lightly damped oscillator operating at resonance frequency ~or = 
( K / I s )  1/2, with Q >> 1 (or equivalently 1 >> Is+ E), we have 

QT 1 = OF 1 + QE'  (22) 
with 

Q~I=_ b/ l .  Q-~I=- E/Is 
When the oscillator is at resonance, w = wr, the solution of Eq. (15) for the 
oscillator motion finally leads to 

D~ Oo = to~(Iy+ E)  = K~ QT (23) 

The amplitude D is proportional to the driving voltage VD applied to the 
oscillator, while 0o is proportional to the ac voltage Vdet detected by an 
electronic device measuring the oscillation amplitude. Hence, one', finally 
obtains [see Eq. (29) below] 

VD / Vdet OC Q~,I (24) 

where the proportionality constant is a geometrical factor that can best be 
determined by calibration. 

When the damped oscillator is not driven, but decays freely, the solution 
of the oscillator equation leads tO an amplitude proportional to e -~/T, with 

r = 2Q-r/tOr (25) 

The most direct way to determine Qr is then to measure r. This method, 
although time-consuming, is simple and is used to calibrate the proportional- 
ity factor in Eq. (24) for the driven oscillator mode, which is hence the 
most convenient and precise way to determine the shear viscosity. 

In practice, the procedure is first to measure QF for the empty oscillator 
before introducing the fluid, which leads to a value for QF via Eq. (22). 
Finally, one obtains 

oJ~ F 4Qv' Is  ]2 
p,7 =,7 L ¢rR3"3-~ +-2h) J (26) 

We note that it is always the product ~p that is measured. This point has 
to be borne in mind when vertical density distributions in the viscometer, 
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due to gravity, have to be taken into account near the l iquid-vapor critical 
point. For the optimum design that gives the highest precision in (~TP), we 
need (a) to make Qr as large as possible and (b) QE >> Qr. The first condition 
requires a very careful design to avoid losses, while for the second, a 
low-frequency Wr that maximizes the ratio Is~Is is desirable. This ratio will 
be much smaller than unity anyway, as can be calculated from a reasonable 
choice of geometrical parameters and the known properties of the fluid. As 
a result, if Qe is of the order of 10 5, QT will still be much larger than unity. 
This condition is necessary for a good performance of the phase-lock 
circuitry that stabilizes the oscillator frequency on the resonance value Wr. 

3.3. The Viscometer: Mechanical  Detai ls  

The device is shown schematically in Fig. 2, and consists of a fiat, 
circular chamber with electrodes attached via a torsional rod of 0.25 cm 
diameter and 1.0 cm length to a base. The whole unit is made of  two pieces 
of beryll ium-copper alloy 25H, where the bottom part of  the chamber is 
screwed into the main body. Furthermore, a thin brass ring is soldered to 
the joint between the two parts to enhance rigidity. The height of the fluid 
layer inside the cell is 0.43 mm and the diameter is 5.3 cm. Before the unit 
was assembled, it was hardened by heating for 3 h at 600°F. Using a lathe, 
the inner surfaces were polished with a succession of emery paper and 
optical grits down to a final grit size of 1/zm. While this did not remove 
all the surface characteristics, the anomalies left were concentric and we 
assumed that they would not cause any turbulence or lock significant 
amounts of  fluid to the wall. This grit size of 1/zm was much smaller than 
the penetration depth for the fluid, 6 = 9/~m. In turn, ~ was much smaller 
than the height h. A hole of -0 .3  mm diameter through the torsion rod 
provided access of the fluid into the cell. 

The height of the chamber was chosen as a compromise between 
reducing the effects of gravity, which dictate a small height, and the desire 
to have the fraction of the fluid in the cell much larger than in the capillaries 
(as will be seen later from the calculated density profile, even reducing the 
height by a factor of four to 0.1 mm would not have substantially reduced 
the effects of gravity, but the mechanical construction would have been 
made more difficult). 

The design of the torsion rod dimensions and the chamber diameter 
was based on the intention to operate the oscillator at a frequency near 
150 Hz, so as to have a large viscous damping from the fluid, which is 
proportional to ~1/2. The operating frequency was low enough to obtain a 
6 of  acceptable magnitude, but large in comparison with the torsional 
resonance of the cradle. The choice of a lower frequency would have 
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Fig. 2. Schematic presentation of the viscometer. (a) Side view showing the cylindrical 
base, the flat chamber, and two electrodes, biased to +200 V dc. (b) View from top with 
the base (dashed circle), showing the four pairs of electrodes and their support yoke. 

required either a decrease of  the torsion rod diameter, making the unit too 
fragile, or an increase in the moment  of  inertia, leading to less sensitivity 
from the fluid damping. A further design consideration was to minimize 
the chamber wall thickness (to decrease Is) in such a way that a pressure 
of  - 5  atm at 4 K inside the chamber could be supported without serious 
deformation'. 

On the two flat ears around the torsion bar  above the chamber,  four 
electrically insulated high-voltage electrodes, where a dc voltage Vdc was 
applied, were attached via Stycast epoxy. A second set of  adjustable elec- 
trodes, in a copper  yoke attached to the cradle, formed capacitors with each 
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of the four high-voltage electrodes on the viscometer shown on the diagram. 
A sinusoidal driving voltage Vo was applied to two diagonally opposite 
outer electrodes, producing only a torsional force. The induced detected 
vo l t age  Vale t was measured on the two remaining electrodes and was then 
fed into the regulating electronics system. In this way, the viscometer could 
be made to oscillate in a highly controlled way, as will be described below. 
The driving torque D is given by the relation 

D =  ' 2 R CDriveVoVdc/eoA (27) 

where R'  is the radial distance of the electrodes from the torsion axis, Cdrive 
is the capacitance of the electrode gap, e0 is the permeability of space, and 
A is the effective surface of  the electrode. The voltage induced between the 
detector electrodes is 

Vdet -- 2 VdcR'C2det z WOo sin tot (28) 
EoA* 

where Cdet is the capacitance of the detector electrode, Z is the impedance 
of  a resistor between the electrodes, to is the angular frequency, 0o is the 
oscillation amplitude, and A* is the effective surface of the detector elec- 
trodes. The QT factor from which the viscosity is obtained is then found 
to be 

D = G Vo V~c (29) 
O ~rl = OoK Wdet 

where G is a geometrical proportionality factor that can best be determined 
via calibration. It was through the measurement of these three voltages that 
all of  the viscosity data were calculated, as will be outlined in Section 4. 

3.4. Viscometer Control System 

To achieve frequency lock, our setup used a phase-locked loop configur- 
ation which capitalizes on the frequency-dependent phase relationship 
between the driving and the detected voltages in a high-Q oscillator. By 
means of  a phase detector and an integrator, any phase lag change between 
the motion of the oscillator and the driving force, indicating a straying from 
the resonance conditions, could be converted into a voltage and fed into a 
voltage-controlled oscillator (VCO). The driving frequency of the viscometer 
would then be brought back to resonance conditions. The schematic circuit 
is shown in Fig. 3, where all the units except for the VCO, the integrator, 
and voltage regulator are of conventional design or commercially available. 
The simplest method of measuring VD and V~e, is to use the digital voltmeters 
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(DVM). In the more elaborate system indicated in Fig. 3, Vo is phase-shifted 
until it is in phase with Vdet. A fraction of this voltage is bridged off by a 
ratio transformer and subtracted from the detected signal. A null in this 
subtraction, sensitively measured by the lock-in amplifier, gives a reading 
of the ratio VD/Vde t on the ratio transformer. In both arrangements,  the 
signal-to-noise ratio made it possible to measure the ratios to within one 
part  in 10 5 . 
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The basic form of the VCO is that of  a tuned L C  circuit placed in the 
positive feedback loop of  a high-impedance operational amplifier to make 
it resonate. To provide a precision voltage-controlled frequency, a variable 
capacitor (varactor) was placed in parallel with the main capacitor of  the 
tuned circuit to provide the one part in 10 7 variation in frequency necessary 
for the fine-tuning of the high-Q viscometer. The inductor in the L C  circuit 
was simulated by operational amplifiers placed in the form of a gyrator 
circuit. 34 In this way a nearly ideal L C  oscillator with a clean, stable sine 
wave was produced to drive the viscometer. Details of  the design are given 
in Ref. 35. 

3.5. Cryostat Temperature Measurement and Control 

Two germanium resistors (Cryocal 2500H) were placed in the cradle 
as indicated in Fig. 1. They were calibrated between 4.2 and 1.7 K by means 
of a 4He vapor  pressure thermometer  attached to the cradle as indicated in 
Fig. 1. The T-58 4He temperature scale was then used as our primary 
standard. An additional Cryocal GE resistor, commercially calibrated for 
the range between 4 and 20 K, was used to calibrate the two other GE 
resistors above 4 K. A bridge circuit comprising an audio generator with 
fine voltage control, ratio transformer bridge, and phase sensitive detector, 
together with a servoheater, permitted the control of  the temperature to 
- 1 / ~ K .  During these measurements,  the ac excitation voltage across the 
bridge, - 2 8  mV rms, was kept constant within 0.1% to avoid drifts caused 
by the very sensitive dependence of the thermometer  resistance on the 
heating current. 

The density cell was of  a standard design, including two insulated 
horizontal plates rigidly mounted in a copper  casing, where all the fluid 
was contained within a height of  -0 .3  mm. The dielectric constant of  the 
fluid was measured by means of a ratio transformer bridge system, and the 
Clausius-Mossotti  relation with a polarizability a = 0.1233 cm3/mole was 
used 36 to calculate the density. A standard capacitor for the second arm of 
the bridge was thermally anchored on the cradle near the density cell. 
Density resolutions 6 p / p  ~ 10 -6 were routinely achieved. Corrections were 
made to the measurement for the bowing of the capacitor plates from the 
effects of  the pressure. This correction was determined by measuring the 
dielectric constant of  4He at 77 K at a number  of  pressures between 0 and 
3 atm, and by assuming that at this temperature, 4He behaves like an ideal 
gas. This measurement  gave the change of the capacitor geometry with 
pressure at 77 K and was assumed to be also valid at 4 K. The correction 
to the density from this source accounted for ~0.5% of the total measure- 
ment, and we estimate the absolute value of the density to be correct to 
within the published uncertainty in the polarizability, ~0.1%. 
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4. EXPERIMENTAL PROCEDURE 

Two purposes are served in this section. First, an outline is given of 
the relevant steps used to prepare the system and to control the operation 
of  the viscometer. Second, a number of calculations are performed to show 
that the measurements are performed under linear conditions. 

4.1. Viscometer Operation 

Beginning at room temperature and atmospheric pressure, a Q~ for 
the empty cell of approximately 10 3 could be achieved by judicious place- 
ment of the various leads in the vicinity of the viscometer, rigid mounting 
of all accessories on the cradle, and careful preparation of the electrodes. 
This optimization could be reached only by tedious trial and error. Following 
this, QE reached - 6  x 104 in vacuum. As the cradle was cooled to 77 K, QE 
increased by a factor of approximately 3, and again by - 3  after further 
cooling to 4 K. This resulted in a final value of Qe ~ 5 x 105, where some 
variations between series of  experiments were seen after modifications of 
the electrodes had been made. In the region between 10 and 1.7 K, experi- 
ments were conducted where the ratio Vo/Voet was measured and the free 
decay curve was obtained to establish that there was no appreciable tem- 
perature dependence of  Qz. Once this check had been made, helium was 
introduced into the cell and a Qr - 3 x 104 was reached. No departure from 
a truly exponential decay could then be observed from an analysis of Vde t 

versus time. This last exercise was repeated from time to time at a number 
of temperatures and in particular close to the critical point, but the decay 
was always found to be exponential. 

Another test was to see whether the filled viscometer was oscillating 
in a linear response regime or whether it was overdriven. Besides the test 
of the exponential decay with time, we studied the ratio Vo/Vdet as  a 
function of Vo by varying V19 by a factor of up to 20. We found that this 
ratio did not change more than 0.2%, proving again that we were operating 
under linear oscillation conditions. 

4.2. Sample Preparation and Viscosity Measurements 

In order to locate the critical isochore, density data along an isotherm 
e ~- 10 -2 were taken as a function of pressure. From previous experiments 
o n  3He,9 and also from the scaling theory, 2° the chemical potential derivative 
(Otx/Op) ~1= p2/3r, where/37- is the compressibility, is a symmetric function 
of IP-Pc[ with a maximum at pc. This was again verified for a number of 
isotherms both for 3He and 4He. The critical density, located within 0.3%, 
was found to be 0.0414 and 0.0700 g/cm, 3 in very good agreement with 
previous measurements. 9'37 
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A series of viscosity measurements along isochores was then started 
by filling the viscometer at e --- 10 -2 to a density P/Pc ~- 1.20 as indicated by 
a reading of  the density cell. Ample time was allowed to permit an equi- 
librium between the two cells. The valve of the viscometer was then closed 
and the ratio VD/Vdet was measured, using regularly spaced reduced tem- 
perature intervals. The output of the ratio transformer detection bridge was 
displayed on a chart recorder as a function of time and served as an 
indication of the equilibration process. In this way, measurements along 
several isochores were taken by successively decreasing the density in the 
viscosity cell by steps of 1-3%, depending on the proximity to pc. 

The indication that the coexistence curve was reached, after starting 
from the single-phase region, was an anomalous change in the ratio VD/Vdet 
with temperature. Away from the critical isochore, this change was sharp, 
but for near-critical isochores, ]p-pcl/pc<.O.02, the ratio VD/Vp passed 
through a fairly broad maximum as a function of temperature, thus prevent- 
ing a precise location of  the critical point. The broad maximum is a result 
of the earth's gravitational field and will be discussed in detail in Section 
5. We have attempted to locate Tc more precisely by observing whether the 
equilibration time after small, regularly spaced temperature steps near Tc 
showed a sharp change with T. Unlike the situation of calorimetric 
measurements, 1°'38 where the thermal relaxation time changed drastically 
when Tc was reached and permitted an accurate location of To, no such 
evidence was found. Hence, the final determination of Tc had to be done 
by means of  a model, as will be described in Section 5. 

At the high-temperature end, far above To, we were limited by the 
maximum pressure the viscometer could withstand. We arbitrarily set a 
limit of 5 atm as our maximum pressure, which corresponded to a maximum 
temperature of  5.5 and 7.0 K for 3He and 4He, respectively. 

Viscosity measurements along isotherms were impractical, because of  
the long equilibration times encountered in transferring fluid between the 
room-temperature containers and the viscometer. These times became par- 
ticularly long near the critical isochore and near To, of the order of  several 
hours. However, the shifts between the viscosity measurements along 
isochores on a given series of measurements were small enough that, by 
data interpolation, values of ~7 along isotherms could be calculated and 
they showed only small scatter, as will be discussed in Section 5. 

4.3. The Shear Rate 

We have calculated the maximum shear rate S = (~)r/Off, for the fluid, 
where Vr is the velocity of the oscillating disk at the distance r from the 
axis. We have approximated the shear rate to S = ~/A, where ~r : o)OoR is 
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the rms velocity. To calculate 00, we have measured the capacitance near 
the electrodes and its change under the application of an ac voltage. We 
have found that under the conditions where oscillations were stable, the 
amplitude is 3 x 1 0 - 6 < 0 o < 5 X 1 0  -4 rad for 2 <  Vdet<200mV and Vdc = 
200V. Using values for 3He of ~=16 /~P ,  p = 0 . 0 4 g / c m ,  3 to/2zr= 
1.6 x 102 Hz, and R = 2.5 cm, we calculate 5 x 10 -1 < S < 50 sec -1 over the 
linear range of the oscillation, where the lower value indicates the limit of 
stable oscillator operation. Usually, we have performed the experiments 
with 0o-~ 1 x 10 -4 tad. 

We have compared this shear rate with the average decay rate I~ of the 
fluctuations near the critical point, given by Eq. (11). To avoid defon,nation 
of the fluctuations in the fluid, the shear displacement l over a length ~ in 
a time ,~--1 in the fluid, given by 1 = P-18vr = ~SF -1, should always be smaller 
than ¢; hence, we require S < F. Substituting numerical values for 3He, 
namely , / ~  16/zP, the correlation length along the critical isochore/5 = pc, 
sc=2.7× 10-Se -~ cm, with v=0.63,  and T=3.31  K into Eq. (11), 'we find 
that for e >-5 × 10 -5 the condition S < F  is satisfied. However, as we shall 
see below, gravity effects dominate the observed viscosity data for e < 10 -4, 
and under experimental conditions, ¢ at a given e is much smaller along 
the walls of the viscometer than indicated by the above equation. Hence, 
in practice, the condition S < F is always satisfied for j5 = pc over the whole 
temperature range used, i.e., for e > 10 -6. However, for 11 - R / R c I / P c  ~-0.02, 
the density at one of the horizontal walls of the cell can become quite close 
to pc due to gravity, as will be shown later. Then ¢ can reach values close 
to those along the critical isochore, and under these circumstances the 
condition S < F might no longer be satisfied for e ~ 10 -s. 

4.4. Power Dissipation 

The total power dissipated in the viscometer is given by the relation 39 

1 p~ f =-~ n-~" u~ ds (30) 

where Uo is the linear velocity amplitude at the fluid boundary, while the 
integral is over the surface of contact, giving for the two parallel circular 
plates with the vertical wall of height h 

[7. = 1 ¢rprlto202oR3( R + 2h) (31) 

Using the same operational parameters for 3He as in Section 4.3, we obtain 
/~ = 6 x 10 -2 erg/sec. Taking for the thermal conductivity of Be-Cu at 4.2 K 
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the value 4° of h = 0.019 W/cm K, we find that this power dissipation leads 
to a temperature difference of  A T - 2 / ~  K between the viscometer body and 
the cradle. 

4.5. Viscometer Calibration 

Two methods were used to calculate the absolute viscosity from our 
VD/Vd~t data. The first consisted in measuring the free decay of the oscilla- 
tions after switching off the driving ac voltage and determinging ~" from the 
least squares fit t o a n  exponential. Using Eq. (25), we obtained Qr. Further- 
more, knowing the empty-cell Q~ and the moment of inertia Is, calculated 
from the viscometer geometry, we could calculate the viscosity from Eq. 
(26). In turn, the resulting value for QT, combined with the recorded value 
of VD/Vd,t before the free decay, permitted determination of the geometrical 
parameter G in Eq. (29). Although this is the most direct method of 
calibration, the calculation involves determining accurately the surface area 
inside the chamber and the moment of inertia of the solid parts, which was 
considered to be uncertain to about 3 % because of the difficulty in estimating 
accurately the moment of inertia due to the solder on the outer ring. 

An alternate method consisted in calibrating the viscometer using 4He 
under saturated vapor pressure at the superfluid transition, where the 
absolute viscosity has been reported by several authors. 41 Of course, this 
calibration is only as accurate as these prior measurements. The drawback 
of this method was the uncertainty about the absolute value of ~7(T~) for 
the two most recent and apparently most precise viscosity measurements 
by Biskeborn and Guernsey al and Bruschi et al. 42 In Ref. 31, where a 
torsional oscillator was used, the reported value was ~7(T~)=27+1 gP ,  
which is significantly higher than those of  previous measurements quoted 
by Ahlers, 41 where on the average *7 (T~)= 24.7/zP. The measurements of 
Ref. 42, done with a vibrating wire, did not yield the absolute value of 7/, 
but rather the ratio ~Tp,/(~Tp)r~, where pn is the density of the normal fluid. 
We note that just as with the torsional oscillator, the experiment with a 
vibrating wire measures the product ~pn. 

To first check how our data compare with those of Refs. 31 and 42, 
we plotted in Fig. 4 the normalized product ~PJ('qP)T~ versus T. Our system 
was not designed for measurements under saturated vapor pressure, and 
our pressure was kept constant at 7 cm Hg. The scatter of our data was 
found comparable with that of Bruschi et al., and the agreement on the 
whole is satisfactory. This reinforces our conjecture that our viscosity 
measurements are reliable on a normalized scale. We leave to a future 
publication a more sensitive comparison with the data of Refs. 31 and 42, 
which is beyond the scope of the present paper. 



T r a n s p o r t  P r o p e r t i e s  o f  H e l i u m  n e a r  t h e  L i q u i d - V a p o r  C r i t i c a l  P o i n t  2 5 7  

I ' ' ' I ' ' ' ' I ' ' ' ' I ' ' r -  
- - -  

1 . 0 5  , Bruschi ~ 

?-]/On 1.00 
i ' i i j i I ' I X 

,I ..,'" -I 
./Y" ___1- .~" 1 o.90 -A/ f l  

/o,,/ I I ~ I L I i I , I I 

/ - 4  - 2  0 2 4 x  I0- '  

0 . 8 5  I t , , I I J i t ~ I I I i , I i I I - -  
-0.05 0 0.05 0.I0 

(T- T X)/T x 
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We calculated the absolute viscosity of 4He at Tx using our first method 
and obtained ~7 = 2 6 . 0 + 1 . 0 ~ P ,  where we used p ( T x ) = O . 1 4 6 2 g / c m  3 as 
determined with our density cell. 

We finally adopted as a compromise the value of  ~7 (Ta) = 25.1/z P from 
the published value by Webeler and Allen, 43 who were quoted by Ahlers. 41 
This determination permitted the calculation of  the geometrical factor G 
of the viscometer and hence the absolute value of ~ for any helium mixture 
in the temperature range below 10 K, where this factor was constant. 

In summary, the stability achieved with the viscometer system permits 
measurements with a scatter in ~7 that is determined by the reproducibility 
and the stability of  the ratio VD/Vde t .  This scatter is of the order of  0.05%, 
which is comparable with that for the best available viscosity 
measurements. 31'42'43 The absolute viscosity is determined only to +3% 
because of  uncertainty in the oscillator geometry, but possibly better from 
calibration at the lambda point of *He using previous data. 

5. M O D E L  CALCULATIONS OF THE APPARENT VISCOSITY 

Gravity profoundly influences the measurement of  properties near a 
l iquid-vapor critical point 21 and prevents observing their intrinsic 
asymptotic behavior. The situation in viscosity measurements using a layer 
of  a finite height is special because the torsional oscillator system only 
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measures  effectively the p roduc t  P~7 for the layers  of  dep th  A in the  top  
and  b o t t o m  pla tes  (we neglect  the small  con t r ibu t ion  f rom the vert ical  wall) .  
This contras ts  with the  o ther  exper iments ,  such as thermal  conduct iv i ty ,  
specific heat ,  densi ty ,  etc., where  measu remen t  f rom an in tegra t ion  over  the  
whole  s amp le  th ickness  is made .  

Hence  it is advan tageous ,  before  p resen t ing  the data ,  to p red ic t  how 
the measu remen t s  are mos t  l ikely going to be affected by  gravity.  The most  
useful  resul ts  are (1) the  in t r ins ic  viscosi ty  d i s t r ibu t ion  ins ide  the fluid layer  
for  a given average densi ty/5  and  e, and  (2) the  p red ic t ion  o f  the t empe ra tu r e  
shift  o f  the  expe r imen ta l  v iscosi ty  m a x i m u m  (or  d i scont inu i ty)  with respec t  
to that  o f ' t he  coexis tence  curve. I t  is also useful  to de te rmine  numer ica l ly  
the  t empe ra tu r e  d e p e n d e n c e  o f  the cri t ical  viscosi ty  u n d e r  cond i t ions  o f  
smal ler  gravi ty  than  on earth,  and  then to ca lcula te  the p red i c t ed  f requency  
d e p e n d e n c e  o f  rl in the  cri t ical  regime.  

Fo r  these  ca lcula t ions ,  it is most  a p p r o p r i a t e  to presen t  the rat io  r l /  
ins tead  o f  the  abso lu te  viscosi ty,  and  for  these m o d e l  ca lcula t ions  we are 
using values  for  pa rame te r s  f rom proper t i e s  de t e rmined  exper imenta l ly ,  as 
p resen ted  in Table  I, t oge the r  with the res t r ic ted  cubic  mode l  for  the equa t ion  
o f  state. 2° The der ivat ive  (OP/OT)p, n e e d e d  for  this ca lcu la t ion  [see Eq. 
(4)] bo th  as a func t ion  o f  p and  e, was ob t a ined  f rom the da ta  of  Refs. 9, 
37, and  44 for  3He, 4He, and  CO2. The  a m p l i t u d e  ~:o o f  the  cor re la t ion  
length  was t aken  f rom the two-sca le  fac tor  universa l i ty ,  45 which  for  3He 

TABLE I 
Parameters Used for the Calculation of the Viscosity ~/~ and of the Singular 

Conductivity AA Using the MC Expressions by Olchowy and Sengers lsa 

3He 4He CO 2 

a 4.05 5.66 18.9 
k 0.818 0.904 1.273 
5o A 2.6 2.0 1.6 
A (Pc), ergs/sec cm. K 940+ 163 T b 1020+ 136T ¢ 5.45 x 10 TM 

"O(pc),~P - 16.7 e 19.1 +0.83T e 341 f 
Pc dynes/cm 2 1.146 × 106 2,274 × 106 7.375 × 107 
Pc gr/cm3 0.04145 0.0696 0.4678 
T c K 3.309 5.1895 394.13 

a = 0.100,/3=0.355, y= 1.190, u =0.633, 6=4.352, b 2= 1.310, c = 0.0393 

"The coefficients a and k are fluid-dependent parameters from the cubic model, 
b2=3(3-2/3) -1, c= (2/36-3)(3-2/3) -l,  given in Table 4.3.4 of Ref. 20. The 
exponents, as well as s¢o, Pc, Pc, and To, are also those presented in Ref. 20. 

bRef. 12. 
CRef. 49. 
dRef. 50. 
eThis work. 
fRef. 7. 
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and 4He is in good agreement with data from acoustic attenuation measure- 
ments, (2.6 + 0.3)x 10 -8 and (1.8 + 0.4)× 10 -8 cm. 46 The specific heat Co data 
for 3He, 4He, and CO2 along the critical isochore were taken from Refs. 
10, 47, and 48. The background heat conductivity A(p~, T) for 3He and 4He 
was from an analysis of data from Refs. 12 and 49, and for CO2 was obtained 
from the data by Michels e t  al. 5° The background viscosity data ~/(Pc, T) 
for 3He and 4He are from the present work, and those for CO2 are from 
Bruschi and Torzo. 7 It is to be noted that the critical exponents are not the 
asymptotic ones, but rather the effective ones determined over the tem- 
perature range above e -  10 -4, where the bulk of the measurements were 
taken. In this section, we shall only discuss calculations for 3He, but the 
parameters for 4He and CO2 will be used in the data analysis of Section 6, 
where we discuss the viscosity measurements. 7 

Generally, as for the other diverging properties in a fluid near the 
critical point, we can foresee several regimes. 

(a) Above To, say for e > 10 -1, the viscosity will have a "background" 
behavior, ~ =f (p ,  T), where the variations with temperature will be 
monotonic. 

(b) Closer to To, roughly for 10 -3 < e ~-- 10 -1,  lies the crossover regime 
from the background into the asymptotic "power law" behavior. 

(c) Still closer to T~, for e < 10 -3, the power law behavior should 
emerge. It is in this regime that the measurements become progressively 
affected by gravity as Tc is approached. The temperature when this influence 
becomes important is determined by the height of the fluid layer and by 
the static properties of the fluid. 21 

5.1. The Gravity Effect 

We first note that, according to Eq. (26), the viscometer system measures 
a quality factor QF such that Q~I ozy~ (~p)l/2, where the summation is over 
the contribution from top and bottom plates. Let us consider a fluid with 
an average density ~ and a background viscosity ~ far above To, where the 
gravity effects are negligible. Then we define a "background" QF 

(~F ~ OC 2(~t5)1/2 (32) 

where the factor 2 accounts for the top and bottom plates. Closer to Tc 
there will be a vertical density gradient, leading in turn to a viscosity gradient, 
and we will have for our equal top and bottom plate geometry 

Q F I OC [ (ptTIt ) 1/23c (pb'rlb ) 1/2] (33) 

where the subscripts t and b denote top and bottom. Hence, forming the 
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measured ratio, we have 

Q~ - ~ ' / '  - \ 3 /  (34) 

where ~ is a weighted average viscosity that is the measured quantity. In 
the absence of  gravity, the above expression would give the ratio of the 
intrinsic viscosities ~//4. 

Hence, the procedure followed in this part to calculate ~ consists in 
first determining the vertical density profile in the fluid for the density ~/pc 
as a function of the reduced temperature. For this program, we have followed 
the approach by Hohenberg and Barmatz, sl using the cubic model set of 
equations with the polar coordinates r and 0. 20 An outline of these equations 
and the method of determining p/pc for a given/~ is presented in Appendix 
D. The solution by numerical methods of these equations gives all the static 
properties via the parameters r and 0, and in particular we have the relation 21 

~:= ~:0r-~(1 +0.16 02) (35) 

so in effect we have obtained ~: as a function of p and e. Second, ~7 and 
furthermore the composite value r~/~ are calculated as a function of  9 and 
~: using the MC expressions developed by Olchowy and Sengers together 
with the parameters in Table I. 

Here three remarks are in order: (a) the cubic model is essentially 
geared to the asymptotic regime for the static properties, where the critical 
exponents a, fl, % etc., are constant and obey the scaling relations. However, 
the application to the viscosity problem involves a temperature range 10 -5 
e ~ 10 -1 for the gravity effect, where the critical exponents have taken an 
effective value somewhat different from the asymptotic one. The values 
listed in Table I represent the best available ones of the effective exponents 
over this range, made internally consistent with the scaling relations. (b) 
the parameter qz:, = 3 x 10 6 c m  -1 f o r  3He, not listed in Table I, was used for 
this model because, as we shall see later in the result analysis, it represents 
the viscosity data very well. (c) We emphasize that the ratio ~ /~ ,  to be 
presented in several figures throughout this paper, represents a weighted 
average that reduces to the intrinsic value of  77/~ when gravity effects have 
become negligible, namely for e ~ 2 x 10 -4. 

To help in visualizing the effect of gravity, we plot in Figs. 5 and 6 a 
vertical profile of the density and of the intrinsic viscosity ~ for the experi- 
mental cell of  0.43 cm height, and we also show by two solid marks near 
the bottom the size of the penetration depth t~. As representative average 
densities, we have used 7Xp _~ (~-pc)/pc = 0 and -0.03. In both figures one 
notes that for e ~> 10 -3, where the density gradients have not yet developed, 
the viscosity is almost constant throughout the cell. However, at smaller 
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reduced temperatures, where some specific layer has a density close to pc, 
a sharp viscosity peak develops around this layer, although it cannot 
necessarily be measured. As e changes, so does the vertical position of the 
layer p = pc when the average # is different from pc. 

In these viscosity measurements, an effect similar to that encountered 
with the specific heat co is produced, and this is shown in Fig. 7, where 
we plot the ratio ~ / #  versus e on the critical isochore. The peak of ~ does 
not coincide with To, but is situated at e - 4 x  10 -5, nearly 150/xK above 
To. (In specific heat experiments, by contrast, the Cv peak is predicted 51 
and observed 1°'52 below To.) As can be seen, gravity effects under earth 
conditions become visible for e ~< 2 x 10 -4.  For comparison, we also present 
the calculation when the earth's gravity field go has been reduced by a factor 
o f  10 3 . 

This calculation was done using a critical exponent % = 0.054. Hence, 
on a logarithmic plot of ~/~7 versus e, the asymptotic slope, according to 
Eq. (6), would be expected to be znP = 0.0342. In reality, the weak - 

1.25 "~"~'"'1 ' " l ' " ' l  ' " l ' " ' l  ' " l ' " ' l  ' " l  .... 
\ 
\ 
\ 

L2c \ -- g : go \ 
\ - - - g  = lO-3go 
\ 
\ 

"~ 1.15 \ 5 
,, He 
\ 

1.10 ~ -~ 

1,05 - 

1.00 , , ,I. 
10 . 6  10 . 4  10 - 2  

( T - T  c ) / T  c 
Fig. 7. The normalized effective viscosity ~/@, to be 
measured in the cell, versus e along the critical isochore 
P=Pc-  ( - - )  With g = g o = 9 - 8 0 x 1 0 2 c m / s e c  2 (earth's 
gravity). (--)  With g = g0x 10 -3. 
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temperature dependence of the factor Q produces a relation of the form 
of Eq. (7) with zn(eff)u=0.0327, as a numerical analysis of the model 
calculation shows. 

Another interesting feature of the model calculation under normal 
gravity conditions is the large temperature range of the crossover regime. 
Along with the gravity-dominated region, this leaves hardly any section 
where we can see a purely power law behavior for the viscosity, namely a 
straight line on this logarithmic plot. We also note that the singular behavior 

1 . 0 5 ~  -- 
1.00~ I I 

Q02 

~ / 

1 . 1 ~  - I I I _ .  

 .loF.L_ 0.05_ 
1.05 I -  ~j . . . .  _, 
1.00[--  I I I 

-1.0 0.0 1.0 2.0 3.0 x 1(]) .4 

( T-To) /T c 
Fig. 8. The effective calculated normalized viscosity r~/~ to be measured in the cell 
versus e close to the coexistence curve and along several isochores. ( - - )  Ap < 0, 
(--) ap>O. 
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is a weak effect starting at less than e = 10 -1 and not rising beyond 10% 
over the background for the maximum value. 

We now examine in Fig. 8 the viscosity model calculation for r~/¢/ 
along several near-critical isochores in SHe, where we have used a linear 
scale for the reduced temperature, focusing on the region where the transi- 
tion from the single-phase into the coexistence region is to occur. The 
dashed and the solid lines express isochores with Ap > 0 and Ap < 0. What 
is particularly striking is that the highest peaks do not occur on the critical 
isochore, but rather when the average density is [Apli0.03. This 
phenomenon is to be expected from our discussion centering on Figs. 5 
and 6. At a temperature close to To, density gradients become important. 
Then, for Ap = 0.03 the density very close to the top horizontal wall is close 
to Pc, and for Ap = -0.03, p = Pc near the bottom wall. At these places, the 
viscosity is then highest. 

Further away from the critical density, a different phenomenon takes 
place, which produces the sharp changes in the curves in Fig. 8. Here the 
meniscus forms at one of the walls by the appearance of a liquid layer 
(# < pc) or a vapor layer (# > Pc). For the droplet, the product p~ is larger 
than for the fluid at the opposite wall and r~/~ will rise sharply as T 
decreases. For the bubble, the opposite phenomenon is produced. 

Finally, we show in Fig. 9 the expected frequency effect on the viscosity 
in the absence of gravity, calculated from Eq. (10) along the critical isochore. 

~-,' " .... I , , , t , , , ,  I i , , i , , , ,  I ' ' ' t ' " ' l  , , 'r  .... 1'25 ~ - - 1 ~  0 Hz 

1.2C : L ~ " % , .  FREQUENCY EFFECT 

000 / ~i04 NO GRAVITY 
1.15 - 

1,10] 2xI04 HZ~J 

1 . 0 5 -  , ~ ,1 , , , , I  ~ , , I , , , , I  , , I .... I , , , i , , , , m - - - - - ~ , ,  

1.00 ~ .... 
i0-6 10-5 i0-4 10-5 10-2 10-I 

(T-T C / T  c 

Fig. 9. Calculated normalized viscosity under zero gravity versus e at several 
frequencies. 
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For our resonant frequency, the viscosity divergence begins to roll over at 
a reduced temperature of  e = 10 -5, when F becomes comparable to to. 
Comparing this figure with Fig. 7, where the effects of gravity are seen, it 
is clear that frequency effects will be obscured by gravity effects. It is only 
at higher frequencies than 10 4 Hz, which are unsuitable for a torsional 
oscillator, that frequency effects can be studied. In the low-gravity environ- 
ment offered by the space shuttle, not only will the intrinsic viscosity be 
measured, but comparison between torsional oscillators at 10 2 and 10 4 Hz 
should be able to demonstrate very clearly the predicted frequency effect. 

6. EXPERIMENTAL RESULTS 

Our data for 3He and qHe were obtained along a number of  isochores 
in several series of experiments. In each series, a calibration with 4He at 
T~ was carried out. The data points, tabulated as absolute and normalized 
viscosity ~ and ~ / ~  versus e, are available from one of the authors (H.M.). 

In this section, we first present a general view of the data and a 
discussion of the background viscosity for the particular case of the critical 
isochore. This is followed by a presentation of the reduced viscosity ~ / ~  
along the critical isochore and along several isotherms, along with the fit 
of  the MC model theory, including gravity effects, to these data. In addition, 
we use the same approach to fit the critical conductivity to the experimental 
data. Finally, we make a similar analysis of the CO2 viscosity data 7 and 
compare the results to those for the helium isotopes. A plot of the 3He 
viscosity data to exhibit the asymptotic and the leading correction-to-scaling 
term 4 is also presented. 

6.1. The Background Viscosity 

In Fig. 10 a general view of the viscosity data for 3He is shown on a 
linear reduced temperature scale. From the 29 isochores measured in three 
series, we present only 16 from one series to avoid overcrowding. It can be 
seen that the singular part of the viscosity is largest for densities near the 
critical one, but not at pc itself. Furthermore, the background viscosity 
increases with density. 

A more detailed view is presented in Fig. 11, where we plot ~ along 
several isochores for 3He, including the critical one, on a linear temperature 
scale. We note the density-dependent temperature variation of the back- 
ground contribution ~, where, for the critical isochore, the slope d~/dT is 
nearly zero over a large temperature region. Also, we note the behavior 
near the coexistence curve: a sharp rise with a peak is observed as the 
critical point is approached. For isochores well above (respectively below) 
the critical one, the rise is much smaller and there is in addition a sharp 
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Fig. 10. General view of the absolute viscosity data for 3He versus e along selected 

isochores from a total of 17 isochores in a single series. 

jump upward (or downward) shown by vertical lines, as the transition into 
the two-phase region takes place. This is just as the model in Section 5 
predicted. In Fig. ll, we also show for comparison the behavior of 4He 
along the critical isochore where the background slope d~/dT is much 
larger than for 3He. This different behavior was reproducible in several 
series of measurements between which the cryostat was warmed up. In Fig. 
12 we show the background 9(p)  near Tc plotted versus p in two series of 
experiments between which the cell was repaired. In the second series, no 
new calibration with 4He at the superfluid transition was made, and yet the 
absolute viscosity measurements differ by only 1.3%, which is smaller than 
the systematic uncertainty. 

For our data analysis, we have fitted the background viscosity to 
polynomials of the form 

~I(P, T) = A(p)  + B(p)  T + C(p)  T 2 (36) 

A tabulation of the co efficients A (p), B ( p ), and C ( p ) is available on request. 
The estimation of the background viscosity close to Tc is crucial in determin- 
ing the shape of ~ / ~  versus e, to be discussed in Section 6.2, and hence 
the value of the fit parameters. There is always some ambiguity on the 
separation of ~ from the total 7/, which in turn leads to a systematic 
uncertainty in the fit parameters--as distinct from their precision--and 
which is difficult to estimate. 

Predictions of ~ in gaseous helium, presumably at very low pressures, 
have been made by De Boer 53 and De Boer and Cohen, 54 using quantum 
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Fig. 11. The absolute viscosity ofaHe and 4He versus e along a few isochores. The vertical 
scale is logarithmic. 

mechanically correct Boltzmann transport equations. Unfortunately, the 
calculations on 4He only extend up to - 3  K. Those for 3He give ~7 ----- 12.5/xP 
near zero pressure. Our data for 3He using densities 0.9 < P/Pc < 1.2 and 
an isochore P/Pc = 0.50, give 7/= 11/xP by extrapolation to p = 0. However, 
it is not clear how justified such an extrapolation is, and more data at 
intermediate densities are needed. Nevertheless, the results are not incon- 
sistent with predictions. 54 

A more complete discussion of the background viscosity will be presen- 
ted elsewhere, together with extensive data on 3He-aHe mixtures along a 
number of isochores near the critical line. 55 

6.2. The Critical V i s c o s i t y  A l o n g  Pc 

From our observations in Sections 4 and 5, it is clear that viscosity 
experiments do not sharply locate the critical point either from the viscosity 
peak or from any sudden change in the observed equilibration time. 
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However, model calculations predict that the observed peak in ~ is shifted 
above Tc by 8epeak = (4.0+0.5) X 10 -5 and (3.0±0.5) x 10 -5 for 3He and 4He, 
respectively. The quoted uncertainty was estimated from a number  of  
calculations using different values for the critical exponents and cubic model 
parameters from those of  Table I, so as to reflect more closely the asymptotic 
conditions. Also, the exponent z, was varied between 0.054 and 0.065. In 
our data presentation, we will therefore shift the observed peak by the 
predicted amount.  

In Fig. 13 we show the normalized viscosity ~ / 9  versus e for 3He 
along the critical isochore, and we find excellent consistency between the 
data of  different series. The solid line and the dashed line are fits of  the 
MC expression to the experiment with two different choices of  the only 
free parameter,  qD, 3.0 x 1 0  6 c m  -1 (solid line) and 5 x 10  6 cm -1 (dashed line), 
to show the sensitivity of  the fit. Clearly, the lower value gives the best fit 
over the whole temperature range, and is determined to within ±0 .5x  
1 0  6 c m  -1 from various fit trials. The uncertainty is greatest close to To, where 
the large density gradients make the measurements very sensitive to the 
geometry of the cell. 

For the fit in Fig. 13, we have used the critical exponent z, = 0.054 
predictcd by the MC theory. Using again qD = 3.0 x 10  6 cm -1, we have tested 
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the sensitivity of the fit on the critical exponent value zn. We found that, 
even though gravity effects prevent measurements from being carried out 
in the asymptotic "power law" regime, the fit is clearly sensitive to the 
critical exponent in the region above e = 10 -4. A change of zn from the 
value of 0.054 by ±0.002 was found to cause the fit to deteriorate noticeably. 
This permits the conclusion that, within the framework of the MC 
expressions, zn =0.054±0.002, as determined from the quality of the fit 
given the estimated background viscosity r~. 

In Fig. 13 we show a similar fit for 4He with zn = 0.054, leading to a 
parameter qD = 7 x 10 6 c m  -1 ,  and just as for 3 H e ,  the fit agrees with the data 
within the experimental scatter, except for the region dominated by gravity 
effects. The inverse value of  qD for both 3He and 4He is of the same order 
as the interatomic distances, a result that appears reasonable; however, it 
comes as a surprise that the values are different by a factor of more than 
2 (the cubic root of the critical molar volume ratio for 4He and 3He is 
-0.92).  This difference might be due to the ambiguity in the estimation of 

near To. 
Figure 14 shows the normalized viscosity of 3He along isotherms, where 

the data points shown were obtained from the various isochores at selected 
reduced temperatures where gravity effects are negligible; this is for e > 
1.5 × 10 -4 .  The solid curves are calculated from the MC theory with the 
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Fig. 14. The normalized viscosity ~/ '0 for 3He versus Ape along several isotherms. 

( - - )  Fits of  the MC theory with qD = 3 x 10 6 cm -l .  
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same input parameters as for Fig. 13 along the critical isochores. Again the 
agreement is excellent with qD = 3 x 10 6 c m  -1.  

A more general plot is presented in Fig. 15, where it is shown that the 
normalized viscosity for 3He for all the isochores approximately scales in 
s c. To avoid overcrowding, only seven isochores are presented. The solid 
line is calculated from the MC theory with the same input parameters as 
before• Strictly speaking, the calculated curves for the various isochores do 
not exactly coincide, but in practice they differ by so little that they cannot 
be clearly distinguished on this plot. 

In Fig. 16 we show a plot of r l / (~:%) versus s ¢-1 as suggested by Eq. 
(8), which includes the asymptotic and the first correction-to-scaling term. 
The temperature range chosen extends from about e = 1.5 x 10 -4  to 2 x 10 -3.  

The lower limit is set by the gradual development of the gravity effects, and 
the higher one by the condition that (qo > 1 for the expansion• The error 
bars indicate the uncertainty of the critical temperature location, as discussed 
before, and this error becomes rapidly negligible as ~:-1 increases. If the 
exponent zn is correctly chosen, this plot should produce a straight line of 
points• It can be seen that this is much more the case for zn = 0.054 than 
for 0.065• Because there is some controversy 56 about the correctness of Eq. 
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(8), we have chosen the simple presentat ion o f  Fig. 16, rather than at tempting 
a fit to determine the various parameters  therein. 

6.3.  T h e  V i s c o s i t y  for  H e  near  the  C o e x i s t e n c e  Curve  

Here we focus our  a t tent ion on the viscosity's temperature dependence  
and on the posit ion o f  its peak  for near-critical isochores under  the influence 
o f  gravity. As can be gathered from the model  calculations, gravity effects 
become negligible for IApl ~> 0.06. Here we want  to test the internal con- 
sistency of  our  data a long several isochores. 

In Fig. 17 we show the data  for 3He and for  4He along several isochores,  
together  with the model  calculations using the same value of  qo as in Section 
5.2. We note the good  agreement  between experiment  and model  calcula- 
tions. Consider ing that  we do not actually sample the viscosity at the walls 
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coexistence curve of 3He for a number of isochores. (0) The data; (--) calculated 
from the model; (- -) the coexistence curve. 

of  our viscometer as the model assumes, but in reality average over the 
penetration depth (see Figs. 7 and 8) in some nonlinear fashion, and 
considering furthermore the very different shapes of  the ~ variation versus 
e along these isochores, the agreement is all the more remarkable. Although 
the critical viscosity ~7/~ is symmetric with respect to pc, gravity produces 
a density profile that is incorporated in the effective measured viscosity 
~/¢/. The resulting asymmetry can be seen also in Fig. 18, where we plot 
for 3He the q-peak position in temperature versus Ap and compare it with 
the coexistence curve. Calculations show that the maximum peak tem- 
perature is at Ap = 0.01, which is consistent with the experiments. Again, 
there is good agreement between model calculations and the experiment .  
Similar calculations have been made for 4He, where the density range was 
smaller than for 3He, making the agreement less convincing. 

6.4. The Critical Viscosity of  CO2 

In view of the success in fitting the MC model to 3He and 4He for the 
viscosity along the critical isochore, we wondered whether similar data on 
other pure fluids near Tc could also be fitted with a similar free parameter  
qD. The only such data along Pc with a scatter comparable to ours are those 
taken by Bruschi and Torzo 7 in CO2. These authors used a rotating disk of  
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effects calculation using qD = 1 x 10 ~ cm - '  and z n = 0.054. For comparison, the data for 
3He and 4He along the critical isochore are shown. 

0.2 mm thickness driven by magnet ic  induct ion and surrounded by the fluid, 
where Tc was located using critical opalescence.  

The normal ized data  ~ / 9  taken from Fig. 2 o f  Ref. 7 are reproduced  
in Fig. 19 together  with the model  predictions using the parameters  presented 
in Table I and qD -- 1 x 10 7 cm -1. The height separating the bo t tom and the 
top layers in contact  with the disk was taken as 0.2 mm. These predict ions 
are shown by a solid line, and two features are very different f rom our  own 
hel ium data. First, CO2 is affected much  less by the gravity field than is 
helium, and  thus the peak  is shifted f rom Tc by only e = 3.5 x 10 -6. The 
smaller effect o f  gravity is consistent with criteria presented by Moldover  
e t  a l .  21 The second difference is that  the data cannot  be fitted by the model ,  
even by increasing q o  above 1 x 10 7 cm -1, which produces  very little change 
in the fit at such large values o f  q o .  Using an exponent  z,  higher than 0.054 
does not  help either. O lchowy and Sengers ~3 have independent ly  discussed 

t h e  CO2 results 7 and found  them inconsistent with other publ ished CO2 
viscosity data  along isotherms. 

In Fig. 19, the viscosity data 7 for  CO2 are compared  with those for  3He 
and 4He. We note that  the singular behavior  starts at a smaller e than for 
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He ( - 9  x 10 -3 for CO2 versus 5 x 10 -2  for He), and the crossover region is 
much smaller for CO2. A quasiasymptotic power-law behavior extends up 
to e - 3  x 10 -3 ,  while for helium this behavior does not extend beyond 
e - 2 x  10 -4. 

6.5. The Critical Thermal Conductivity of aHe 

Our success with fitting the helium viscosity data to the MC theory 
including gravity effects prompted us to reexamine the thermal conductivity 
data of Pittman et al .  12 for 3 H e  along the critical isochore. Our hope was 
that a similar fit with the same single free parameter qD could be made, 
which would confirm the value found for the viscosity. To this end, we used 
the MC conductivity expression, presented in Appendix A, together with 
the gravity-induced density gradient through the cell (Appendix D), as for 
the viscosity calculations. Here, however, in contrast to the viscosity, the 
entire fluid layer in the cell contributes to the observed conductivity, and 
hence an integration of  the thermal resistivity A-1 through the height of  the 
cell must be performed to give the effective average A. 

From the data of Pittman et al. 12 it is clear that above 4 K, £ is easily 
determined from measurements along isotherms, but below 4 K, there is 
already a singular contribution. The interpolation of data to yield £(pc) in 
the crossover regime e ~< 10 -1 has an uncertainty that it is difficult to assess. 
In Fig. 20 we show the data for AA along the critical isochore, and in Fig. 

l o 4 [ _  .' ~ ' " ' " u  ' ",'"'1 ' ",'"u ' ' " ' " ' l  ' " , ' " ' ,  ' ' '"'L 
- ~ : " ~ . _  • P i t tman 

(ergs / ~--%-~- q D(cm-T) 
/sec~--mK/TOS_ Ajo :0 ~ ~1o 7 

10 2 3 x 10 7 / '  "'l." 

10-6 10-4 10-2 10 0 
(T-To)/T c 

Fig. 20. The singular thermal conductivity AA versus reduced temperature for 3He 
along the critical isochore. ( 0 )  Data by Pittman et aL t2 ( - - )  MC model fit with 
qD = 6 X 10 7 c m  -1 .  ( -  - )  Model fit with q o  = 3 x 107 cm -1. 
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Fig. 21. The singular thermal conductivity AA versus reduced density for several isotherms. 

Symbols; Data by Pittman et  al. 12 ( - - )  MC calculation with qD = 6 X 107 cm -1. 

21 along isotherms. The estimated uncertainty of  AA is indicated by error 
bars. Contrary to the presentation of  the viscosity by means of a ratio 7//~, 
the critical conductivity is obtained by the subtraction h - A, with a strongly 
increasing uncertainty as h becomes nearly equal to h. 

The singular term AA was calculated from the MC theory using the 
same input parameters as for the viscosity calculation and using a calculated 
dependence of  the viscosity on the density for the region where gravity 
effects become important. It was again apparent from the model that the 
conductivity peak would be located slightly above Tc at Epeak ~ 3.0 x 10 -5, 
in the same direction as for the viscosity. Accordingly, the temperature of 
the data was adjusted to situate the observed peak at the calculated value 
of  epeak- The quality of  the model calculation fit to the critical isochore data 
shown in Fig. 20 by the dashed and solid lines was acceptable for q o  = 

(3-6) x 10 7 c m  -1. This value is 10-20 times larger than for the viscosity data. 
The solid curve for qD = 3 X 106 cm -] (representing the fit value to viscosity 
data) is shown to demonstrate the dependence of the calculation on the 
value of  qo- For the isotherm data in Fig. 21 we only present the calculated 
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curves for qo = 6 x 107 cm -~, which represent the data quite well. For e = 
3.1 x 10 -4, the data points are somewhat asymmetric with respect to the 
critical density. We believe that this is caused by a systematic error in the 
density. Measurements o f p  were made ~2 in a cell situated in close proximity 
to the thermal conductivity cell and in thermal contact with it. A capillary 
tube permitted fluid flow communication. If  there was a slight temperature 
gradient V T between the two cells, there had to be a density gradient Vp 
between them, proportional to aTVT,  where a r  is the isobaric thermal 
expansion coefficient (pressure gradients from gravity were calculated to 
have a negligible effect). Since a r  diverges at To, Vp could become of the 
order of 1-2% for small enough e and for densities near pc. 

The disappointing disagreement between the qD obtained from viscosity 
and thermal conductivity measurements in 3He prompted us to make an 
analysis of unpublished conductivity data 57 in 4He along isotherms for 
9.6 x 10-3~ < e. Just as for SHe, the critical contribution AA extends much 
further above Tc than for the viscosity. From Fig. 3 of Ref. 49, the existence 
of this contribution can be detected up to 8 K (e = 5.3 x 10-1). A fit of  the 
MC expressions 13 to several isotherms and also to AA along the critical 
isochore, obtained by interpolation from isotherm data, results in a value 
of qo = (2 -4)x  10 7 cm -~, again well above that obtained from viscosity 
measurements, qD = 7 X 106 cm -1. 

In both the situations for 3He and 4He, a cutoff in the AA tail at smaller 
e would have produced a smaller qD and hence a better agreement with 
the viscosity data analysis. Although there is little uncertainty about the 
data for the total conductivity, it is not excluded that separation into a 
"background" and a "singular" contribution is somewhat ambiguous. 
However, if AA is calculated from MC theory with the qo from the viscosity, 
this singular part vanishes for e >~ 1 × 10 -1 (see Fig. 20). Then the isotherms 
above this temperature would represent "background" conductivity. Such 
isotherms are those for T = 4.135 K and above for SHe (Fig. '7 in Ref. 12) 
and for T = 6 K and above for 4He (Fig. 3 in Ref. 49). Clearly however, an 
anomalous contribution is still visible for these isotherms. 

We note also the different way qo affects the model calculations for 77 
and AA, as already pointed out in Section 2. The conductivity in the 
asymptotic critical region is independent of qo, while for the viscosity qo 

affects the calculation over the whole temperature range. If qo is shifted 
from its correct value, the whole curve is displaced, making the fit a poor 
one along its whole length. For these reasons, we feel that the qo from ~7 
data is determined more sensitively than from the conductivity results but 
only ~ can be estimated correctly. 

However, Sengers 56 believes that on the contrary the determination of 
qo should be made from a fit to the thermal conductivity data. His reasons 
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are as follows: since qD is the maximum wave number of the long-range 
fluctuations, the critical fluctuations should no longer contribute at tem- 
peratures and densities away from the critical point, where ~: becomes of 
the order of q~ .  Thus, qo is related to the range of critical enhancement. 
Because of the mode coupling, this range is the same for the thermal 
conductivity and viscosity, but we have seen that in most of this range, the 
viscosity enhancement is small. Hence, Sengers feels that qo should be 
determined from thermal conductivity data. A fit of  the theory to the viscosity 
data will give qD values that are sensitive to the approximations used, and 
will have less physical significance, he believes. 

6.6. The Universal Dynamic  Amplitude Ratio 

The ratio ~,  defined by Eq. (14), has been calculated for 3He using 
the various properties along the critical isochore obtained as follows: 

1. The viscosity ~ was obtained from the data presented in this paper 
and AA from Ref. 12. As discussed before, the absolute value of  r/, normal- 
ized to the viscosity of 4He at Tx, is estimated to be known to +3% or 
better, and that of AA is +5% when h >> ,~. 

2. The specific heat pCp was calculated from measurements 9-11 of pC,,, 
(OP/OT)p, and fiT. We estimated the accuracy of pC, to be - 5 % .  

3. The correlation length was taken from Table I. 
The resultant ratio calculation was limited to the region 1 0 - 4 <  e < 10 -2 

because of  gravity effects for small e and the uncertainty of AA at larger e, 
when AA << h - h. The results are shown in Fig. 22, where the error on each 
point, +0.1, includes the absolute estimated uncertainty of  all terms in Eq. 
(14). Our average limiting value ~ =1.05+0.1 is found to be in good 
agreement with the predictions, ~ = 1.03 28 and ~ --- 1.04. 23 

As was pointed out elsewhere, 29 the total thermal diffusivity DT = A/pCp 
from the conductivity and thermodynamic measurements is smaller by 
- 1 5 %  than DT from light scattering data, which would lead to ~ -~  1.2. 
These last measurements, carried out at a small scattering angle 0, were 
very sensitive to a small systematic reading error in 0, which could partially 
at least account for the discrepancy. We place more weight on the determina- 
tion of the singular part of  DT from the A and the flUp data. There, the 
background value of A / pCp was better determined than from light scattering 
experiments, which could not be carried out for e > 10 -2 because of  the 
low scattering intensity. 

7. SUMMARY AND CONCLUSIONS 

We have developed a torsional oscillator designed to measure the 
viscosity r/ o f  helium near the l iquid-vapor critical point. This oscillator 
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Fig. 22. The dynamic amplitude ratio ~ for 3He calculated from various static and 
transport properties versus e. On each point there is a systematic error of ±0.1 
reflecting the combined uncertainties in these properties. 

operates at 158 Hz and is able to measure r /with a precision of 0.05% and 
an absolute accuracy of - 3 % .  Over the range of linear and stable operation, 
the calculated shear rate S covers the range 0.5 < S < 50 sec -a. 

We have carried out viscosity measurements on 3He and 4He along a 
number of critical isochores and over a large enough temperature range to 
permit a good determination of the background viscosity in addition to the 
singular one. The principal results of this research can be summarized as 
follows: 

1. The temperature dependence of  the background viscosity ~ is a 
sensitive function of the density, and dfT/dT is quite different for 3He and 
4He, for instance, along the critical isochores. A rough extrapolation of  the 
data for 3He to zero density near 3.35 K gives a value that is consistent with 
predictions. We note the ambiguity in determining ~ near Tc and its 
importance in the fit of  ~7 to critical dynamics theories. 

2. Just as for the static properties, the apparent (measured) viscosity 
in helium is influenced strongly by the earth's gravitational field, which 

limits the viscosity singularity to 10% for 3He and 14% for 4He above ~. 
3. Model calculations incorporating both the recently developed mode 

coupling theory expressions by Olchowy and Sengers and the vertical fluid 
density gradient in the cell from the earth's field can be fitted well to the 
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data along the critical isochore and the isotherms. The fit uses the experi- 
mental calorimetric and the equation-of-state data, expressed by the cubic 
model with coefficients and exponents tabulated by Sengers and Sengers, 
and the critical exponent z, = 0.054. The fit then has only one free parameter, 
the cutoff wave number qo. The inverse of the best fit values for q o in 3He 
and 4 H e ,  qD = 3 " ×  10 6 and 7 x 10 6 c m  -1,  is of the order of the interatomic 
distance, a reasonable result. The quality of the fit is quite sensitive to the 
value of  z~ and is best for z, = 0.054. 

4. These model calculations have also been carried out to predict 
viscosity measurements near the coexistence curve for near-critical 
isochores. They show remarkable agreement with the experiments, which 
exhibit a peculiar behavior due to gravity effects. 

5. A similar analysis has been carried out for the CO2 data by Bruschi 
and Torzo along the critical isochore. However, a satisfactory fit could not 
be obtained. 

6. Furthermore, model calculations using the theory for the singular 
thermal conductivity AA in 3He have been fitted to experiments in this 
laboratory, both along the critical isochore and along isotherms. The fit 
yielded 3 × 10 7 < qD < 6 x 10 7 c m  -1 for 3 H e ,  while ideally it should have been 
the same as for the viscosity. For 4He, a fit of  the MC expressions to 
conductivity data gives 2 × 107 < qD < 4 × 10 7 c m  -1,  again higher than from 
the viscosity data analysis. The width of the range for qo is determined by 
the uncertainty in the background conductivity subtraction. In spite of the 
unfortunate inconsistency, which remains to be clarified, one can state that 
q~l is of the order of interatomic distances, a plausible result. 

7. A plot of the viscosity to bring into evidence the asymptotic term 
and the first correction-to-scaling term from a series expansion in both the 
MC and the DRG theory again indicates the exponent zn = 0.054 to be more 
correct for helium than z, = 0.065. 

8. Finally, using experimental data of 7/, AA, and static properties, we 
calculated the dynamic critical amplitude ratio ~ as a function of the 
reduced temperature along the critical isochore. As Tc was approached, the 
asymptotic limit was found to be ~ = 1.05±0.1, in good agreement with 
predictions. 

APPENDIX A. THE MC FORMULAS OF OLCHOWY AND 
SENGERS 

In this Appendix, we will present expressions for the critical viscosity 
and the thermal conductivity derived by Olchowy and Sengers, which were 
used in the analysis of the data obtained in this laboratory. 
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The function H, defined in Eq. (3), which leads to the viscosity, is 
given by 

H(qD~, Z, B) 

: r s , n . o  z 

- [ - - ]  t an-1  qD~J 
z \ l + S /  

+[ (l + 3B)(l + B)-2z2  + z4-4Sz2]Ll(YD) 

+ B [(1 + 8)  2 -  2z 2 + z 4 -  3Bz2]L2(yD) 
Z 

where 

YD = tan-l(qDtg) 

z= F / G  

1 
LI(yD) = [ut(u, YD) - vI(v, YD)] 

t l - -  l) 

1 
L2(yD) = [I(v, YD) -- I(U, YD)] 

U - - l )  

_ 1 l + x + ( 1  --x2)l/2tan(y/2) 
I(x, y) ( l - -x2)  1/2 In l+x- - (1 - -x2)WZtan(y /2 )  

[ ( zr/1 4B'~1/21 
=z ----Z =~ L\ --~-) J u 2 1+ 1 , v 

The definitions for B, (3, and F are given in Eq. (4). 
For the calculation of the thermal conductivity hA, the expression 

defined in Eq. (13) is given by 

fl( qo~, B) 

_ _ _  [ - 1  B ( l +sin yD) ~/2 
1 2 ~  tan (qD~)+--~lnkl_sinyD/ l + B ~ r  

+ ~. Ai(Zk, G, F, B)I(zi, YD)] 
i=1 

__ [ ( )] 2 [ I+GyD+F( I+B) - '  1 - e x p  l+(qD~)3p~/3p2 
"17" 

where 

Fz, - ( B/  G)( G2 + B + F) - (z~/ G)( G 2 + B) 
Ai - Hk¢i(zi - Zk) 
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Z 1 = I G + ( s I + S 2 )  

Z 2 = 1 G - - I ( s  1 + $2) +½j" 31/2(S, -- S2) 

z3 = ]G-½(s, + s2) -½j" 31/Z(sl - s2) 

Sl = [ r  4- ( s  3 + r2)1/2] 1/3 
$2 

r = B * 3 / 2 e * l / 2 ( A * / 2 -  1/6+ e*/27) 

s - ~ B  ( 1 - ~ e )  

e*= G 2 / ( B + F ) ;  A* = B / ( B + F ) ;  

j = (-1) ,/2 

B * = B + F  

APPENDIX B. THE COMPRESSIBILITY OF 3He ALONG 
THE CRITICAL ISOCHORE 

In order to check the reduced temperature range over which the 
compressibility/3r along pc could be represented by a simple power law, 
we have extended previous data 1~ of 3He up to a temperature of 11 K 
(e -~ 2.5) by measuring the density versus pressure along 15 isotherms. The 
resulting compressibility along the critical isochore is presented in Fig. 23, 
together with the extrapolated curve from the data by Pittman et al., n with 

10-5 

s He + New data, .p =-Pc 
--Extrapolation of 

Pittrnan et al. 
km ~ i  deal gas low 

10-4 
( cm 2 ,~ 
~ d ~ J  

, I i I  L I  , q I , t LI ' "-~"~ 
10-1 10 0 

(T-T C ) / T C 

Fig. 23. The isothermal compressibility for 3He along the critical isochore. ( x ) New 
data. ( - - )  Power law from the data by Pittman et al. u extrapolated beyond e = 6 x 10 -2. 
(- -) Compressibility of an ideal gas. 
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Ye~ = 1.20. Within the experimental scatter, the new data follow the simple 
power law up to e ~ 0.5. Further from To, the compressibility approaches 
the curve (RT)  -1 for an ideal gas, as shown by the dashed curve. Such a 
"background"  estimation is no doubt oversimplified because of the expected 
departure of  3He from an ideal behavior at low temperatures, but at least 
it gives a value that at 8 K is not too far from the experimental value of  kr. 
We have also calculated the compressibility of  3He using the second virial 
expansion computed by Kilpatrick et aL 5s and found the predicted kr  to 
lie appreciably above the data. Thus, the second virial expansion does not 
provide a good expression for the background compressibility. 

APPENDIX C. H Y D R O D Y N A M I C  EQUATIONS FOR THE FLUID 
PERTURBED BY OSCILLATING D I S K S  

Here we present the equations leading to the relation between the 
viscosity and the experimental parameters in the torsional oscillator 
measurement.  This presentation follows to a great extent that in Shaumeyer 's  
thesis. 33 

Consider a fluid layer of  height h between two horizontal circular plates 
of  radius R, such that R >> h. Define the vertical coordinate z, where z = 0 
in the middle between the plates, so the upper  and lower plates are located 
at z = +h i2 .  Also define a horizontal coordinate r with its zero at the disk 
center, and define an angle of  rotation 0 around the axis with respect to a 
fixed coordinate system. 

The disks are made to oscillate in phase with an amplitude 0 = 00 e i~t, 
which is assumed to be small enough that the motion of the fluid is harmonic. 
The fluid displacement u(r, 0, z, t) is assumed to be only in the direction 
of 0, and we also assume cylindrically symmetric fluid motions, u = Ouo with 
0Uo/00 = 02uo/002 = O. Given these assumptions, and setting Uo = rl~(z, t), 
one finds the Navier-Stokes equation in cylindrical coordinates reduced to 

- ( c . ~ )  
Ot p OZ 2 

We first consider the case of  R ooo. When we apply the boundary 
condition that the fluid at the walls (z = + d / 2 )  is locked to the disks, the 
solution of  this equation for a simple harmonic motion becomes 

~(z,  t) cos(kz) O(t) (C.2) 
cos( kd / 2 ) 

where 

k = ±(1 + i)(pw/2~7) 1/2 (C.3) 
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Here we define the penetration depth 

= (2rl/pog) 1/2 (C.4) 

the distance over which the amplitude of the shear wave falls off by a factor 
of  e. 

To calculate the torque Fy produced by the fluid on the walls of the 
container, we consider the frictional force Cro, z per area at any point on the 
boundary. We obtain 

E 
tr°'z A 

The torque is then 

. . . .  ~710u°]/ \ = 71kr tan(kd /2 ) .  0 
\ Oz/z=J_a/2 

(c.5) 

f 
Ff = J rcro, z dA (C6) 

where the integration is over the disk surfaces of radius R. One then obtains 

F f = rl'l"~kR 4 tan(kd/2)  • 0(t) (C.7) 

Here k is still a complex quantity. It can be shown, however, that if the 
ratio h / 2 6  is much greater than unity (which is realized in our viscometer 
geometry), then t a n ( k d / 2 )  ~ i and the torque can be written as 

Fz = ( i -  1)O(t )2wl f  (C.8) 

where 

7r A R2 (disks) (C.9) 

which is the moment of  inertia of a layer of fluid one-half the penetration 
depth thick. 

Shaumeyer and Behringer 33 have also treated the fluid motion inside 
an oscillating cylinder of radius R and infinite height. They calculated the 
torque due to a section h of this cylinder, with h >> 6. The equation for the 
torque can then be expressed again by Eq. (C.8), but with 

A 
I I = ,rrp~ R3h (cylinder) (C.9a) 

Thus, for our geometry, including friction on the horizontal disks and on 
the vertical walls, but ignoring small corner effects, the total effective moment 
of inertia of the fluid is 

I f = 2  P~ R3(R  + 2h) (C.9b) 
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In our specific case, the vertical wall contribution represents a 3% 
additive correction. 

The equation of motion of  the torsional oscillator filled with fluid is now 

I~b'(t) = - K O  + Fo + FF + FE (C. 10) 

where I~ is the moment  of  inertia of  the container, Fo  = De-i°"e i* is the 
driving torque with an arbitrary constant phase qb and real amplitude /9, 
F~ = toEd(t) is the empty-ceil damping term, and - K O  is the elastic restoring 
torque of the fiber. 

Inserting a solution 0 = 0o e -i~°' into Eq. (C.10), we obtain 

(D/Oo) e ~ = [ K - t o 2 ( I s + I f ) ] - i [ t o 2 ( I f q - E ) ]  (C.11) 

The inverse response function G*== (D/00)  2 can be obtained by taking the 
absolute value of both sides of  (C.11) and defining I = I~ + I I as the total 
inertial term and F =-Is-+ E as the total dissipative term. One then obtains 

G* = ( K  - t o 2 I ) 2 - - ~ -  to4F2 (C.12) 

The inverse response function G* should be at a minimum when the 
oscillator is at resonance at a frequency to,. In the situation where I >> Is. , 
the resonant frequency is given by 

to~ = K I / (  I 2 -  F 2) = K /  I (C.13) 

Using Eq. (C.11), we find 

tan ~b = - w 2 F / ( K  - coal) (C.14) 

where it can be seen from Eq. (C.13) that ~b will be nearly 90 ° at resonance. 
For freely decaying oscillations, we have D = 0. Inserting the oscillator 

motion equation 0 = 0o e x p [ - t ( i t o -  r - l ) ]  into Eq. (C.10) and equating the 
real and imaginary parts, one obtains 

(_to2 + r-2)i~ = - K  - toF(to + r - ' )  (C.15) 

to = ( F -  2I~)/ Fr  (C.16) 

Inserting Eq. (C.16) into Eq. (C.15), one obtains 

1 2F  3-6F2I~ +41=12-413 s 
T 2 ~ _ - -  

K F 2 (C.17) 

and finally 

,c1 , r F tot 

where Qr '~  I s / F  is the quality factor of  the total system. 
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A P P E N D I X  D.  T H E  E A R T H ' S  G R A V I T Y  E F F E C T S  

Here we outline the method used to calculate the vertical profile of the 
density in the cell p( z )  due to gravity and deduce the corresponding 
correlation length st(z, e). Calculation of  p( z )  already has been presented 
by Hohenberg and Barmatz 51 using the linear model equation of  state. We 
have carried out similar calculations using the cubic model. 2° 

The method for using this model consists in picking a temperature and 
an average density, finding the height of the critical density pc, and then 
using the change in the chemical potential dl~ = - g d z ,  where g is the 
gravitational acceleration, to calculate the density as one moves above or 
below the critical density. The vertical density profile is not dependent on 
the cell height h per se, but on e and on the distance in the vertical direction 
from the level of pc even if Pc is predicted to fall outside the cell. 

We use the cubic model relations 

I~(p, T) - I~(pc, T) = ( Pc/ pc)aO(1 - 02)r t3~ (D.1) 

e = (1 -bEO2)r (0.2) 

Ap =- (p - pc ) / pc = k(1 + c02) 0r ~ (D.3) 

where a and k are fluid-dependent constants, b 2 = 3 ( 3 - 2 f l )  -1, c =  
( /36-  3)(3 -2f l ) -1 ,  and r and 0 are the parameters. We then make the choice 
that pc (or the meniscusyis always at a height z * =  0 and we find 

z* = CO(1 = 02)r t3~ (D.4) 

C = -aPc(pcgh)  -1 (D.5) 

Here z* is expressed in units of h. Solving the parametric equations (D.1)- 
(D.5) will yield p(z*) .  In order to find the locus of the critical density with 
respect to the cell bottom, z*, one needs to find the zero value of the function 

f 
~*,+l 

F ( z * )  = ~ -  3z* p(z*)  dz* (D.6) 

Here p(z*)  is known as a function of 0, and the integrand then reads 

p(z*)  dz* = -e-lp(O)Crl+t3~{1 + [(2fl6 - 1 )b2-3]02+ b2(3 - 2flt~) 04} dO 

(0.7) 

Both the parametric equations and the zero of F ( z * )  were solved by 
computer using a bisection root finder, in preference to Newton's method, 
which was often found to be unreliable very near the critical point. The 
coordinate change z = ( z * -  z~* - 1/2)h gives consistency with the height z 
in Appendix C, where z = 0 is located in the middle of the fluid layer of 
height h. 
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The result from these equat ions  made available 0 and  r at any height 
z in the conta iner  at a given e and  ft. Then  the correlat ion length ~ could 
be ob ta ined  from the cubic model  relat ion 

so(e, Ap) = sCor-~(i +O.1602) (D.8) 

The value of ~:(e, Ap) in turn  yielded the viscosity ~7/~- And  the s ingular  
thermal  conduct ivi ty  AA. 
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